Limit behavior of Weyl coefficients

IF 0.7 4区 数学 Q2 MATHEMATICS
R. Pruckner, H. Woracek
{"title":"Limit behavior of Weyl coefficients","authors":"R. Pruckner, H. Woracek","doi":"10.1090/spmj/1729","DOIUrl":null,"url":null,"abstract":"<p>The sets of radial or nontangential limit points towards <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"i normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>i</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">i\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of a Nevanlinna function <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\">\n <mml:semantics>\n <mml:mi>q</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are studied. Given a nonempty, closed, and connected subset <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper L\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">L</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathcal {L}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C Subscript plus Baseline overbar\">\n <mml:semantics>\n <mml:mover>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>+</mml:mo>\n </mml:msub>\n <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo>\n </mml:mover>\n <mml:annotation encoding=\"application/x-tex\">\\overline {{\\mathbb {C}}_+}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, a Hamiltonian <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is constructed explicitly such that the radial and outer angular cluster sets towards <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"i normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>i</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">i\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the Weyl coefficient <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q Subscript upper H\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>q</mml:mi>\n <mml:mi>H</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">q_H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are both equal to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper L\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">L</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathcal {L}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The method is based on a study of the continuous group action of rescaling operators on the set of all Hamiltonians.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1729","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The sets of radial or nontangential limit points towards i i\infty of a Nevanlinna function q q are studied. Given a nonempty, closed, and connected subset L {\mathcal {L}} of C + ¯ \overline {{\mathbb {C}}_+} , a Hamiltonian H H is constructed explicitly such that the radial and outer angular cluster sets towards i i\infty of the Weyl coefficient q H q_H are both equal to L {\mathcal {L}} . The method is based on a study of the continuous group action of rescaling operators on the set of all Hamiltonians.

Weyl系数的极限行为
研究了Nevanlinna函数q q向i∞i \infty方向的径向或非切向极限点集。给定一个非空的、封闭的、连通的子集L {\mathcal L{ (C +¯}}\overline{{\mathbb C_{+)}}明确地构造了一个哈密顿量H H,使得Weyl系数q H q_H向i∞i }\infty方向的径向和外角簇集都等于L {\mathcal L{。该方法是基于对所有哈密顿算子集合上的重标算子的连续群作用的研究。}}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信