{"title":"The adjoint of the nullwert map on Jacobi forms of lattice index","authors":"Hatice Boylan","doi":"10.1007/s12188-024-00281-5","DOIUrl":"10.1007/s12188-024-00281-5","url":null,"abstract":"<div><p>We state and prove a formula for the adjoint of the nullwert map from spaces of Jacobi cusp forms of lattice index to spaces of modular forms. Furthermore, we prove a nonvanishing result for the image of the adjoint of the nullwert map.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"94 2","pages":"225 - 234"},"PeriodicalIF":0.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the non-vanishing of theta lifting of Bianchi modular forms to Siegel modular forms","authors":"Di Zhang","doi":"10.1007/s12188-024-00279-z","DOIUrl":"10.1007/s12188-024-00279-z","url":null,"abstract":"<div><p>In this paper we study the theta lifting of a weight 2 Bianchi modular form <span>({mathcal {F}})</span> of level <span>(Gamma _0({mathfrak {n}}))</span> with <span>({mathfrak {n}})</span> square-free to a weight 2 holomorphic Siegel modular form. Motivated by Prasanna’s work for the Shintani lifting, we define the local Schwartz function at finite places using a quadratic Hecke character <span>(chi )</span> of square-free conductor <span>({mathfrak {f}})</span> coprime to level <span>({mathfrak {n}})</span>. Then, at certain 2 by 2 g matrices <span>(beta )</span> related to <span>({mathfrak {f}})</span>, we can express the Fourier coefficient of this theta lifting as a multiple of <span>(L({mathcal {F}},chi ,1))</span> by a non-zero constant. If the twisted <i>L</i>-value is known to be non-vanishing, we can deduce the non-vanishing of our theta lifting.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"94 2","pages":"163 - 208"},"PeriodicalIF":0.4,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Connectivity properties of the Schur–Horn map for real Grassmannians","authors":"Augustin-Liviu Mare","doi":"10.1007/s12188-024-00277-1","DOIUrl":"10.1007/s12188-024-00277-1","url":null,"abstract":"<div><p>To any <i>V</i> in the Grassmannian <span>(textrm{Gr}_k({mathbb R}^n))</span> of <i>k</i>-dimensional vector subspaces in <span>({mathbb {R}}^n)</span> one can associate the diagonal entries of the (<span>(ntimes n)</span>) matrix corresponding to the orthogonal projection of <span>({mathbb {R}}^n)</span> to <i>V</i>. One obtains a map <span>(textrm{Gr}_k({mathbb {R}}^n)rightarrow {mathbb {R}}^n)</span> (the Schur–Horn map). The main result of this paper is a criterion for pre-images of vectors in <span>({mathbb {R}}^n)</span> to be connected. This will allow us to deduce connectivity criteria for a certain class of subspaces of the real Stiefel manifold which arise naturally in frame theory. We extend in this way results of Cahill et al. (SIAM J Appl Algebra Geom 1:38–72, 2017).</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"94 1","pages":"33 - 55"},"PeriodicalIF":0.4,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lifts of line bundles on curves on K3 surfaces","authors":"Kenta Watanabe, Jiryo Komeda","doi":"10.1007/s12188-024-00275-3","DOIUrl":"10.1007/s12188-024-00275-3","url":null,"abstract":"<div><p>Let <i>X</i> be a K3 surface, let <i>C</i> be a smooth curve of genus <i>g</i> on <i>X</i>, and let <i>A</i> be a line bundle of degree <i>d</i> on <i>C</i>. Then a line bundle <i>M</i> on <i>X</i> with <span>(Motimes {mathcal {O}}_C=A)</span> is called a lift of <i>A</i>. In this paper, we prove that if the dimension of the linear system |<i>A</i>| is <span>(rge 2)</span>, <span>(g>2d-3+(r-1)^2)</span>, <span>(dge 2r+4)</span>, and <i>A</i> computes the Clifford index of <i>C</i>, then there exists a base point free lift <i>M</i> of <i>A</i> such that the general member of |<i>M</i>| is a smooth curve of genus <i>r</i>. In particular, if |<i>A</i>| is a base point free net which defines a double covering <span>(pi :Clongrightarrow C_0)</span> of a smooth curve <span>(C_0subset {mathbb {P}}^2)</span> of degree <span>(kge 4)</span> branched at distinct 6<i>k</i> points on <span>(C_0)</span>, then, by using the aforementioned result, we can also show that there exists a 2:1 morphism <span>({tilde{pi }}:Xlongrightarrow {mathbb {P}}^2)</span> such that <span>({tilde{pi }}|_C=pi )</span>.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"94 1","pages":"95 - 106"},"PeriodicalIF":0.4,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The distribution of the multiplicative index of algebraic numbers over residue classes","authors":"Pieter Moree, Antonella Perucca, Pietro Sgobba","doi":"10.1007/s12188-024-00276-2","DOIUrl":"10.1007/s12188-024-00276-2","url":null,"abstract":"<div><p>Let <i>K</i> be a number field and <i>G</i> a finitely generated torsion-free subgroup of <span>(K^times )</span>. Given a prime <span>(mathfrak {p})</span> of <i>K</i> we denote by <span>({{,textrm{ind},}}_mathfrak {p}(G))</span> the index of the subgroup <span>((Gbmod mathfrak {p}))</span> of the multiplicative group of the residue field at <span>(mathfrak {p})</span>. Under the Generalized Riemann Hypothesis we determine the natural density of primes of <i>K</i> for which this index is in a prescribed set <i>S</i> and has prescribed Frobenius in a finite Galois extension <i>F</i> of <i>K</i>. We study in detail the natural density in case <i>S</i> is an arithmetic progression, in particular its positivity.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"94 1","pages":"1 - 17"},"PeriodicalIF":0.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140595195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"(C^{1,alpha })-regularity for p-harmonic functions on SU(3) and semi-simple Lie groups","authors":"Chengwei Yu","doi":"10.1007/s12188-024-00274-4","DOIUrl":"10.1007/s12188-024-00274-4","url":null,"abstract":"<div><p>In this paper, when <span>(1<p<2)</span>, we establish the <span>(C^{1,alpha }_{,textrm{loc},})</span>-regularity of weak solutions to the degenerate subelliptic <i>p</i>-Laplacian equation </p><div><div><span>$$begin{aligned} triangle _{{{mathcal {H}}},p}u(x)=sum limits _{i=1}^6X^*_i(|{nabla _{{{mathcal {H}}}}u}|^{p-2}X_iu)=0 end{aligned}$$</span></div></div><p>on SU(3) endowed with the horizontal vector fields <span>(X_1,dots ,X_6)</span>. The result can be extended to a class of compact connected semi-simple Lie group.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"94 1","pages":"57 - 94"},"PeriodicalIF":0.4,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biconservative surfaces with constant mean curvature in Lorentzian space forms","authors":"Aykut Kayhan, Nurettin Cenk Turgay","doi":"10.1007/s12188-023-00273-x","DOIUrl":"10.1007/s12188-023-00273-x","url":null,"abstract":"<div><p>In this paper, we consider biconservative and biharmonic isometric immersions into the 4-dimensional Lorentzian space form <span>({mathbb {L}}^4(delta ))</span> with constant sectional curvature <span>(delta )</span>. We obtain some local classifications of biconservative CMC surfaces in <span>({mathbb {L}}^4(delta ))</span>. Further, we get complete classification of biharmonic CMC surfaces in the de Sitter 4-space. We also proved that there is no biharmonic CMC surface in the anti-de Sitter 4-space. Further, we get the classification of biconservative, quasi-minimal surfaces in Minkowski-4 space.\u0000</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"94 1","pages":"19 - 31"},"PeriodicalIF":0.4,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139583144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards generic base-point-freeness for hyperkähler manifolds of generalized Kummer type","authors":"Mauro Varesco","doi":"10.1007/s12188-023-00271-z","DOIUrl":"10.1007/s12188-023-00271-z","url":null,"abstract":"<div><p>We study base-point-freeness for big and nef line bundles on hyperkähler manifolds of generalized Kummer type: For <span>(nin {2,3,4})</span>, we show that, generically in all but a finite number of irreducible components of the moduli space of polarized <span>(textrm{Kum}^n)</span>-type varieties, the polarization is base-point-free. We also prove generic base-point-freeness in the moduli space in all dimensions if the polarization has divisibility one.\u0000</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"93 2","pages":"133 - 147"},"PeriodicalIF":0.4,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Isotropicity of surfaces in Lorentzian 4-manifolds with zero mean curvature vector","authors":"Naoya Ando","doi":"10.1007/s12188-023-00272-y","DOIUrl":"10.1007/s12188-023-00272-y","url":null,"abstract":"","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"93 2","pages":"163 - 166"},"PeriodicalIF":0.4,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136283096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Davoud Abdi Kalow, Claude Laflamme, Atsushi Tateno, Robert Woodrow
{"title":"An example of Tateno disproving conjectures of Bonato–Tardif, Thomasse, and Tyomkyn","authors":"Davoud Abdi Kalow, Claude Laflamme, Atsushi Tateno, Robert Woodrow","doi":"10.1007/s12188-023-00270-0","DOIUrl":"10.1007/s12188-023-00270-0","url":null,"abstract":"<div><p>In his 2008 thesis [16] , Tateno claimed a counterexample to the Bonato–Tardif conjecture regarding the number of equimorphy classes of trees. In this paper we revisit Tateno’s unpublished ideas to provide a rigorous exposition, constructing locally finite trees having an arbitrary finite number of equimorphy classes; an adaptation provides partial orders with a similar conclusion. At the same time these examples also disprove conjectures by Thomassé and Tyomkyn.\u0000</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"93 2","pages":"99 - 131"},"PeriodicalIF":0.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135272208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}