实格拉斯曼人的舒尔-霍恩图谱的连接特性

IF 0.4 4区 数学 Q4 MATHEMATICS
Augustin-Liviu Mare
{"title":"实格拉斯曼人的舒尔-霍恩图谱的连接特性","authors":"Augustin-Liviu Mare","doi":"10.1007/s12188-024-00277-1","DOIUrl":null,"url":null,"abstract":"<div><p>To any <i>V</i> in the Grassmannian <span>\\(\\textrm{Gr}_k({\\mathbb R}^n)\\)</span> of <i>k</i>-dimensional vector subspaces in <span>\\({\\mathbb {R}}^n\\)</span> one can associate the diagonal entries of the (<span>\\(n\\times n\\)</span>) matrix corresponding to the orthogonal projection of <span>\\({\\mathbb {R}}^n\\)</span> to <i>V</i>. One obtains a map <span>\\(\\textrm{Gr}_k({\\mathbb {R}}^n)\\rightarrow {\\mathbb {R}}^n\\)</span> (the Schur–Horn map). The main result of this paper is a criterion for pre-images of vectors in <span>\\({\\mathbb {R}}^n\\)</span> to be connected. This will allow us to deduce connectivity criteria for a certain class of subspaces of the real Stiefel manifold which arise naturally in frame theory. We extend in this way results of Cahill et al. (SIAM J Appl Algebra Geom 1:38–72, 2017).</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"94 1","pages":"33 - 55"},"PeriodicalIF":0.4000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connectivity properties of the Schur–Horn map for real Grassmannians\",\"authors\":\"Augustin-Liviu Mare\",\"doi\":\"10.1007/s12188-024-00277-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To any <i>V</i> in the Grassmannian <span>\\\\(\\\\textrm{Gr}_k({\\\\mathbb R}^n)\\\\)</span> of <i>k</i>-dimensional vector subspaces in <span>\\\\({\\\\mathbb {R}}^n\\\\)</span> one can associate the diagonal entries of the (<span>\\\\(n\\\\times n\\\\)</span>) matrix corresponding to the orthogonal projection of <span>\\\\({\\\\mathbb {R}}^n\\\\)</span> to <i>V</i>. One obtains a map <span>\\\\(\\\\textrm{Gr}_k({\\\\mathbb {R}}^n)\\\\rightarrow {\\\\mathbb {R}}^n\\\\)</span> (the Schur–Horn map). The main result of this paper is a criterion for pre-images of vectors in <span>\\\\({\\\\mathbb {R}}^n\\\\)</span> to be connected. This will allow us to deduce connectivity criteria for a certain class of subspaces of the real Stiefel manifold which arise naturally in frame theory. We extend in this way results of Cahill et al. (SIAM J Appl Algebra Geom 1:38–72, 2017).</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":\"94 1\",\"pages\":\"33 - 55\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-024-00277-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-024-00277-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于在 k 维向量子空间的格拉斯曼(textrm{Gr}_k({\mathbb R}}^n))中的任意 V,我们可以将 (\(n\times n\)) 矩阵的对角项与 \({\mathbb {R}}^n\)到 V 的正交投影相对应。我们可以得到一个映射 (textrm{Gr}_k({\mathbb {R}}^n)\rightarrow {\mathbb {R}^n\) (舒尔-霍恩映射)。本文的主要结果是一个关于 \({\mathbb {R}}^n\) 中向量的预映像是否连通的标准。这将使我们能够为实 Stiefel 流形的某类子空间推导出连通性标准,这些子空间自然出现在框架理论中。我们以这种方式扩展了 Cahill 等人的成果(SIAM J Appl Algebra Geom 1:38-72, 2017)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connectivity properties of the Schur–Horn map for real Grassmannians

To any V in the Grassmannian \(\textrm{Gr}_k({\mathbb R}^n)\) of k-dimensional vector subspaces in \({\mathbb {R}}^n\) one can associate the diagonal entries of the (\(n\times n\)) matrix corresponding to the orthogonal projection of \({\mathbb {R}}^n\) to V. One obtains a map \(\textrm{Gr}_k({\mathbb {R}}^n)\rightarrow {\mathbb {R}}^n\) (the Schur–Horn map). The main result of this paper is a criterion for pre-images of vectors in \({\mathbb {R}}^n\) to be connected. This will allow us to deduce connectivity criteria for a certain class of subspaces of the real Stiefel manifold which arise naturally in frame theory. We extend in this way results of Cahill et al. (SIAM J Appl Algebra Geom 1:38–72, 2017).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信