{"title":"K3 表面曲线上线束的提升","authors":"Kenta Watanabe, Jiryo Komeda","doi":"10.1007/s12188-024-00275-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> be a K3 surface, let <i>C</i> be a smooth curve of genus <i>g</i> on <i>X</i>, and let <i>A</i> be a line bundle of degree <i>d</i> on <i>C</i>. Then a line bundle <i>M</i> on <i>X</i> with <span>\\(M\\otimes {\\mathcal {O}}_C=A\\)</span> is called a lift of <i>A</i>. In this paper, we prove that if the dimension of the linear system |<i>A</i>| is <span>\\(r\\ge 2\\)</span>, <span>\\(g>2d-3+(r-1)^2\\)</span>, <span>\\(d\\ge 2r+4\\)</span>, and <i>A</i> computes the Clifford index of <i>C</i>, then there exists a base point free lift <i>M</i> of <i>A</i> such that the general member of |<i>M</i>| is a smooth curve of genus <i>r</i>. In particular, if |<i>A</i>| is a base point free net which defines a double covering <span>\\(\\pi :C\\longrightarrow C_0\\)</span> of a smooth curve <span>\\(C_0\\subset {\\mathbb {P}}^2\\)</span> of degree <span>\\(k\\ge 4\\)</span> branched at distinct 6<i>k</i> points on <span>\\(C_0\\)</span>, then, by using the aforementioned result, we can also show that there exists a 2:1 morphism <span>\\({\\tilde{\\pi }}:X\\longrightarrow {\\mathbb {P}}^2\\)</span> such that <span>\\({\\tilde{\\pi }}|_C=\\pi \\)</span>.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"94 1","pages":"95 - 106"},"PeriodicalIF":0.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifts of line bundles on curves on K3 surfaces\",\"authors\":\"Kenta Watanabe, Jiryo Komeda\",\"doi\":\"10.1007/s12188-024-00275-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>X</i> be a K3 surface, let <i>C</i> be a smooth curve of genus <i>g</i> on <i>X</i>, and let <i>A</i> be a line bundle of degree <i>d</i> on <i>C</i>. Then a line bundle <i>M</i> on <i>X</i> with <span>\\\\(M\\\\otimes {\\\\mathcal {O}}_C=A\\\\)</span> is called a lift of <i>A</i>. In this paper, we prove that if the dimension of the linear system |<i>A</i>| is <span>\\\\(r\\\\ge 2\\\\)</span>, <span>\\\\(g>2d-3+(r-1)^2\\\\)</span>, <span>\\\\(d\\\\ge 2r+4\\\\)</span>, and <i>A</i> computes the Clifford index of <i>C</i>, then there exists a base point free lift <i>M</i> of <i>A</i> such that the general member of |<i>M</i>| is a smooth curve of genus <i>r</i>. In particular, if |<i>A</i>| is a base point free net which defines a double covering <span>\\\\(\\\\pi :C\\\\longrightarrow C_0\\\\)</span> of a smooth curve <span>\\\\(C_0\\\\subset {\\\\mathbb {P}}^2\\\\)</span> of degree <span>\\\\(k\\\\ge 4\\\\)</span> branched at distinct 6<i>k</i> points on <span>\\\\(C_0\\\\)</span>, then, by using the aforementioned result, we can also show that there exists a 2:1 morphism <span>\\\\({\\\\tilde{\\\\pi }}:X\\\\longrightarrow {\\\\mathbb {P}}^2\\\\)</span> such that <span>\\\\({\\\\tilde{\\\\pi }}|_C=\\\\pi \\\\)</span>.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":\"94 1\",\"pages\":\"95 - 106\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-024-00275-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-024-00275-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 X 是一个 K3 曲面,让 C 是 X 上一条属 g 的光滑曲线,让 A 是 C 上一个度数为 d 的线束,那么 X 上具有 \(M\otimes {mathcal {O}}_C=A\) 的线束 M 被称为 A 的提升。在本文中,我们将证明如果线性系统|A|的维数是\(r\ge 2\), \(g>2d-3+(r-1)^2\), \(d\ge 2r+4\),并且 A 计算了 C 的克利福德索引,那么存在一个 A 的无基点提升 M,使得|M|的一般成员是属 r 的光滑曲线。特别地,如果|A|是一个无基点网,它定义了一条光滑曲线\(C_0\subset {\mathbb {P}}^2\) 的双重覆盖\(\pi :C\longrightarrow C_0\),该曲线的度\(k\ge 4\) 在\(C_0\)上的不同的 6k 点处分支,那么通过使用上述结果,我们也可以证明存在一个 2:1 morphism \({\tilde{\pi }}:X\longrightarrow {mathbb {P}}^2\) such that \({\tilde\pi }}|_C=\pi \).
Let X be a K3 surface, let C be a smooth curve of genus g on X, and let A be a line bundle of degree d on C. Then a line bundle M on X with \(M\otimes {\mathcal {O}}_C=A\) is called a lift of A. In this paper, we prove that if the dimension of the linear system |A| is \(r\ge 2\), \(g>2d-3+(r-1)^2\), \(d\ge 2r+4\), and A computes the Clifford index of C, then there exists a base point free lift M of A such that the general member of |M| is a smooth curve of genus r. In particular, if |A| is a base point free net which defines a double covering \(\pi :C\longrightarrow C_0\) of a smooth curve \(C_0\subset {\mathbb {P}}^2\) of degree \(k\ge 4\) branched at distinct 6k points on \(C_0\), then, by using the aforementioned result, we can also show that there exists a 2:1 morphism \({\tilde{\pi }}:X\longrightarrow {\mathbb {P}}^2\) such that \({\tilde{\pi }}|_C=\pi \).
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.