The distribution of the multiplicative index of algebraic numbers over residue classes

IF 0.4 4区 数学 Q4 MATHEMATICS
Pieter Moree, Antonella Perucca, Pietro Sgobba
{"title":"The distribution of the multiplicative index of algebraic numbers over residue classes","authors":"Pieter Moree,&nbsp;Antonella Perucca,&nbsp;Pietro Sgobba","doi":"10.1007/s12188-024-00276-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>K</i> be a number field and <i>G</i> a finitely generated torsion-free subgroup of <span>\\(K^\\times \\)</span>. Given a prime <span>\\(\\mathfrak {p}\\)</span> of <i>K</i> we denote by <span>\\({{\\,\\textrm{ind}\\,}}_\\mathfrak {p}(G)\\)</span> the index of the subgroup <span>\\((G\\bmod \\mathfrak {p})\\)</span> of the multiplicative group of the residue field at <span>\\(\\mathfrak {p}\\)</span>. Under the Generalized Riemann Hypothesis we determine the natural density of primes of <i>K</i> for which this index is in a prescribed set <i>S</i> and has prescribed Frobenius in a finite Galois extension <i>F</i> of <i>K</i>. We study in detail the natural density in case <i>S</i> is an arithmetic progression, in particular its positivity.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"94 1","pages":"1 - 17"},"PeriodicalIF":0.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-024-00276-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let K be a number field and G a finitely generated torsion-free subgroup of \(K^\times \). Given a prime \(\mathfrak {p}\) of K we denote by \({{\,\textrm{ind}\,}}_\mathfrak {p}(G)\) the index of the subgroup \((G\bmod \mathfrak {p})\) of the multiplicative group of the residue field at \(\mathfrak {p}\). Under the Generalized Riemann Hypothesis we determine the natural density of primes of K for which this index is in a prescribed set S and has prescribed Frobenius in a finite Galois extension F of K. We study in detail the natural density in case S is an arithmetic progression, in particular its positivity.

代数数的乘法指数在残差类上的分布
让 K 是一个数域,G 是 \(K^\times \)的一个有限生成的无扭子群。给定 K 的一个素数 \(\mathfrak {p}\),我们用 \({{\textrm{ind}\,}}_\mathfrak {p}(G)\)表示在 \(\mathfrak {p}\)处的残差域乘法群的子群 \((G\bmod \mathfrak {p})\)的索引。在广义黎曼假说下,我们确定了K的素数的自然密度,对于这些素数来说,这个指数在一个规定的集合S中,并且在K的有限伽罗瓦扩展F中具有规定的弗罗贝尼斯(Frobenius)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信