Lifts of line bundles on curves on K3 surfaces

IF 0.4 4区 数学 Q4 MATHEMATICS
Kenta Watanabe, Jiryo Komeda
{"title":"Lifts of line bundles on curves on K3 surfaces","authors":"Kenta Watanabe,&nbsp;Jiryo Komeda","doi":"10.1007/s12188-024-00275-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> be a K3 surface, let <i>C</i> be a smooth curve of genus <i>g</i> on <i>X</i>, and let <i>A</i> be a line bundle of degree <i>d</i> on <i>C</i>. Then a line bundle <i>M</i> on <i>X</i> with <span>\\(M\\otimes {\\mathcal {O}}_C=A\\)</span> is called a lift of <i>A</i>. In this paper, we prove that if the dimension of the linear system |<i>A</i>| is <span>\\(r\\ge 2\\)</span>, <span>\\(g&gt;2d-3+(r-1)^2\\)</span>, <span>\\(d\\ge 2r+4\\)</span>, and <i>A</i> computes the Clifford index of <i>C</i>, then there exists a base point free lift <i>M</i> of <i>A</i> such that the general member of |<i>M</i>| is a smooth curve of genus <i>r</i>. In particular, if |<i>A</i>| is a base point free net which defines a double covering <span>\\(\\pi :C\\longrightarrow C_0\\)</span> of a smooth curve <span>\\(C_0\\subset {\\mathbb {P}}^2\\)</span> of degree <span>\\(k\\ge 4\\)</span> branched at distinct 6<i>k</i> points on <span>\\(C_0\\)</span>, then, by using the aforementioned result, we can also show that there exists a 2:1 morphism <span>\\({\\tilde{\\pi }}:X\\longrightarrow {\\mathbb {P}}^2\\)</span> such that <span>\\({\\tilde{\\pi }}|_C=\\pi \\)</span>.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"94 1","pages":"95 - 106"},"PeriodicalIF":0.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-024-00275-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a K3 surface, let C be a smooth curve of genus g on X, and let A be a line bundle of degree d on C. Then a line bundle M on X with \(M\otimes {\mathcal {O}}_C=A\) is called a lift of A. In this paper, we prove that if the dimension of the linear system |A| is \(r\ge 2\), \(g>2d-3+(r-1)^2\), \(d\ge 2r+4\), and A computes the Clifford index of C, then there exists a base point free lift M of A such that the general member of |M| is a smooth curve of genus r. In particular, if |A| is a base point free net which defines a double covering \(\pi :C\longrightarrow C_0\) of a smooth curve \(C_0\subset {\mathbb {P}}^2\) of degree \(k\ge 4\) branched at distinct 6k points on \(C_0\), then, by using the aforementioned result, we can also show that there exists a 2:1 morphism \({\tilde{\pi }}:X\longrightarrow {\mathbb {P}}^2\) such that \({\tilde{\pi }}|_C=\pi \).

K3 表面曲线上线束的提升
让 X 是一个 K3 曲面,让 C 是 X 上一条属 g 的光滑曲线,让 A 是 C 上一个度数为 d 的线束,那么 X 上具有 \(M\otimes {mathcal {O}}_C=A\) 的线束 M 被称为 A 的提升。在本文中,我们将证明如果线性系统|A|的维数是\(r\ge 2\), \(g>2d-3+(r-1)^2\), \(d\ge 2r+4\),并且 A 计算了 C 的克利福德索引,那么存在一个 A 的无基点提升 M,使得|M|的一般成员是属 r 的光滑曲线。特别地,如果|A|是一个无基点网,它定义了一条光滑曲线\(C_0\subset {\mathbb {P}}^2\) 的双重覆盖\(\pi :C\longrightarrow C_0\),该曲线的度\(k\ge 4\) 在\(C_0\)上的不同的 6k 点处分支,那么通过使用上述结果,我们也可以证明存在一个 2:1 morphism \({\tilde{\pi }}:X\longrightarrow {mathbb {P}}^2\) such that \({\tilde\pi }}|_C=\pi \).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信