On the non-vanishing of theta lifting of Bianchi modular forms to Siegel modular forms

IF 0.4 4区 数学 Q4 MATHEMATICS
Di Zhang
{"title":"On the non-vanishing of theta lifting of Bianchi modular forms to Siegel modular forms","authors":"Di Zhang","doi":"10.1007/s12188-024-00279-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the theta lifting of a weight 2 Bianchi modular form <span>\\({\\mathcal {F}}\\)</span> of level <span>\\(\\Gamma _0({\\mathfrak {n}})\\)</span> with <span>\\({\\mathfrak {n}}\\)</span> square-free to a weight 2 holomorphic Siegel modular form. Motivated by Prasanna’s work for the Shintani lifting, we define the local Schwartz function at finite places using a quadratic Hecke character <span>\\(\\chi \\)</span> of square-free conductor <span>\\({\\mathfrak {f}}\\)</span> coprime to level <span>\\({\\mathfrak {n}}\\)</span>. Then, at certain 2 by 2 g matrices <span>\\(\\beta \\)</span> related to <span>\\({\\mathfrak {f}}\\)</span>, we can express the Fourier coefficient of this theta lifting as a multiple of <span>\\(L({\\mathcal {F}},\\chi ,1)\\)</span> by a non-zero constant. If the twisted <i>L</i>-value is known to be non-vanishing, we can deduce the non-vanishing of our theta lifting.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"94 2","pages":"163 - 208"},"PeriodicalIF":0.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-024-00279-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the theta lifting of a weight 2 Bianchi modular form \({\mathcal {F}}\) of level \(\Gamma _0({\mathfrak {n}})\) with \({\mathfrak {n}}\) square-free to a weight 2 holomorphic Siegel modular form. Motivated by Prasanna’s work for the Shintani lifting, we define the local Schwartz function at finite places using a quadratic Hecke character \(\chi \) of square-free conductor \({\mathfrak {f}}\) coprime to level \({\mathfrak {n}}\). Then, at certain 2 by 2 g matrices \(\beta \) related to \({\mathfrak {f}}\), we can express the Fourier coefficient of this theta lifting as a multiple of \(L({\mathcal {F}},\chi ,1)\) by a non-zero constant. If the twisted L-value is known to be non-vanishing, we can deduce the non-vanishing of our theta lifting.

论从比安奇模态到西格尔模态的 Theta 提升的非凡性
在本文中,我们研究了水平为 \(\Gamma _0({\mathfrak {n}})\ 的权重 2 比安奇模态 \({\mathcal {F}}\) 与 \({\mathfrak {n}}\) 无平方性到权重 2 全态西格尔模态的 θ 提升。受普拉桑纳(Prasanna)对新塔尼提升的研究的启发,我们使用无平方导体\({\mathfrak {f}}\)的与级\({\mathfrak {n}}\)共价的二次赫克特征\(\chi \)来定义有限位置的局部施瓦茨函数。然后,在某些与\({\mathfrak {f}}\)相关的2乘2 g矩阵\(\beta \)上,我们可以把这个θ提升的傅里叶系数用一个非零常数表示为\(L({\mathcal {F}},\chi ,1)\)的倍数。如果已知扭曲的 L 值是非万向的,我们就可以推导出我们的 theta 提升的非万向性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信