{"title":"洛伦兹空间形式中具有恒定平均曲率的双保守曲面","authors":"Aykut Kayhan, Nurettin Cenk Turgay","doi":"10.1007/s12188-023-00273-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider biconservative and biharmonic isometric immersions into the 4-dimensional Lorentzian space form <span>\\({\\mathbb {L}}^4(\\delta )\\)</span> with constant sectional curvature <span>\\(\\delta \\)</span>. We obtain some local classifications of biconservative CMC surfaces in <span>\\({\\mathbb {L}}^4(\\delta )\\)</span>. Further, we get complete classification of biharmonic CMC surfaces in the de Sitter 4-space. We also proved that there is no biharmonic CMC surface in the anti-de Sitter 4-space. Further, we get the classification of biconservative, quasi-minimal surfaces in Minkowski-4 space.\n</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biconservative surfaces with constant mean curvature in Lorentzian space forms\",\"authors\":\"Aykut Kayhan, Nurettin Cenk Turgay\",\"doi\":\"10.1007/s12188-023-00273-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider biconservative and biharmonic isometric immersions into the 4-dimensional Lorentzian space form <span>\\\\({\\\\mathbb {L}}^4(\\\\delta )\\\\)</span> with constant sectional curvature <span>\\\\(\\\\delta \\\\)</span>. We obtain some local classifications of biconservative CMC surfaces in <span>\\\\({\\\\mathbb {L}}^4(\\\\delta )\\\\)</span>. Further, we get complete classification of biharmonic CMC surfaces in the de Sitter 4-space. We also proved that there is no biharmonic CMC surface in the anti-de Sitter 4-space. Further, we get the classification of biconservative, quasi-minimal surfaces in Minkowski-4 space.\\n</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-023-00273-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-023-00273-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Biconservative surfaces with constant mean curvature in Lorentzian space forms
In this paper, we consider biconservative and biharmonic isometric immersions into the 4-dimensional Lorentzian space form \({\mathbb {L}}^4(\delta )\) with constant sectional curvature \(\delta \). We obtain some local classifications of biconservative CMC surfaces in \({\mathbb {L}}^4(\delta )\). Further, we get complete classification of biharmonic CMC surfaces in the de Sitter 4-space. We also proved that there is no biharmonic CMC surface in the anti-de Sitter 4-space. Further, we get the classification of biconservative, quasi-minimal surfaces in Minkowski-4 space.
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.