洛伦兹空间形式中具有恒定平均曲率的双保守曲面

IF 0.4 4区 数学 Q4 MATHEMATICS
Aykut Kayhan, Nurettin Cenk Turgay
{"title":"洛伦兹空间形式中具有恒定平均曲率的双保守曲面","authors":"Aykut Kayhan,&nbsp;Nurettin Cenk Turgay","doi":"10.1007/s12188-023-00273-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider biconservative and biharmonic isometric immersions into the 4-dimensional Lorentzian space form <span>\\({\\mathbb {L}}^4(\\delta )\\)</span> with constant sectional curvature <span>\\(\\delta \\)</span>. We obtain some local classifications of biconservative CMC surfaces in <span>\\({\\mathbb {L}}^4(\\delta )\\)</span>. Further, we get complete classification of biharmonic CMC surfaces in the de Sitter 4-space. We also proved that there is no biharmonic CMC surface in the anti-de Sitter 4-space. Further, we get the classification of biconservative, quasi-minimal surfaces in Minkowski-4 space.\n</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biconservative surfaces with constant mean curvature in Lorentzian space forms\",\"authors\":\"Aykut Kayhan,&nbsp;Nurettin Cenk Turgay\",\"doi\":\"10.1007/s12188-023-00273-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider biconservative and biharmonic isometric immersions into the 4-dimensional Lorentzian space form <span>\\\\({\\\\mathbb {L}}^4(\\\\delta )\\\\)</span> with constant sectional curvature <span>\\\\(\\\\delta \\\\)</span>. We obtain some local classifications of biconservative CMC surfaces in <span>\\\\({\\\\mathbb {L}}^4(\\\\delta )\\\\)</span>. Further, we get complete classification of biharmonic CMC surfaces in the de Sitter 4-space. We also proved that there is no biharmonic CMC surface in the anti-de Sitter 4-space. Further, we get the classification of biconservative, quasi-minimal surfaces in Minkowski-4 space.\\n</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-023-00273-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-023-00273-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑以恒定截面曲率 \(\delta \)对 4 维洛伦兹空间形式 \({\mathbb {L}}^4(\delta )\) 进行双保守和双谐和等距沉浸。我们得到了一些在 \({\mathbb {L}}^4(\delta )\) 中的双保守 CMC 曲面的局部分类。此外,我们还得到了德西特 4 空间中双谐波 CMC 曲面的完整分类。我们还证明了反德西特 4 空间中不存在双谐波 CMC 曲面。此外,我们还得到了闵科夫斯基-4 空间中的双保守准最小曲面的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biconservative surfaces with constant mean curvature in Lorentzian space forms

In this paper, we consider biconservative and biharmonic isometric immersions into the 4-dimensional Lorentzian space form \({\mathbb {L}}^4(\delta )\) with constant sectional curvature \(\delta \). We obtain some local classifications of biconservative CMC surfaces in \({\mathbb {L}}^4(\delta )\). Further, we get complete classification of biharmonic CMC surfaces in the de Sitter 4-space. We also proved that there is no biharmonic CMC surface in the anti-de Sitter 4-space. Further, we get the classification of biconservative, quasi-minimal surfaces in Minkowski-4 space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信