Towards generic base-point-freeness for hyperkähler manifolds of generalized Kummer type

IF 0.4 4区 数学 Q4 MATHEMATICS
Mauro Varesco
{"title":"Towards generic base-point-freeness for hyperkähler manifolds of generalized Kummer type","authors":"Mauro Varesco","doi":"10.1007/s12188-023-00271-z","DOIUrl":null,"url":null,"abstract":"<div><p>We study base-point-freeness for big and nef line bundles on hyperkähler manifolds of generalized Kummer type: For <span>\\(n\\in \\{2,3,4\\}\\)</span>, we show that, generically in all but a finite number of irreducible components of the moduli space of polarized <span>\\(\\textrm{Kum}^n\\)</span>-type varieties, the polarization is base-point-free. We also prove generic base-point-freeness in the moduli space in all dimensions if the polarization has divisibility one.\n</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-023-00271-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study base-point-freeness for big and nef line bundles on hyperkähler manifolds of generalized Kummer type: For \(n\in \{2,3,4\}\), we show that, generically in all but a finite number of irreducible components of the moduli space of polarized \(\textrm{Kum}^n\)-type varieties, the polarization is base-point-free. We also prove generic base-point-freeness in the moduli space in all dimensions if the polarization has divisibility one.

广义Kummer型hyperkähler流形的一般基点自由性
我们研究了广义Kummer型hyperkähler流形上的大束和网束的基点自由性:对于\(n\in \{2,3,4\}\),我们证明了除了有限数量的偏振\(\textrm{Kum}^n\)型变体的模空间的不可约分量外,一般的偏振是无基点的。如果极化可整除为1,则证明了模空间在所有维度上的一般基点自由性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信