Advances in Applied Mathematics最新文献

筛选
英文 中文
Truncated theta series from the Bailey lattice 从贝利格中截断的级数
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-03-26 DOI: 10.1016/j.aam.2025.102884
Xiangyu Ding, Lisa Hui Sun
{"title":"Truncated theta series from the Bailey lattice","authors":"Xiangyu Ding,&nbsp;Lisa Hui Sun","doi":"10.1016/j.aam.2025.102884","DOIUrl":"10.1016/j.aam.2025.102884","url":null,"abstract":"<div><div>In 2012, Andrews and Merca obtained a truncated version of Euler's pentagonal number theorem and showed the nonnegativity related to partition functions. Meanwhile, Andrews and Merca, Guo and Zeng independently conjectured that the truncated Jacobi triple product series has nonnegative coefficients, which has been confirmed analytically and also combinatorially. In 2022, Merca proposed a stronger version for this conjecture. In this paper, by applying Agarwal, Andrews and Bressoud's identity derived from the Bailey lattice, we obtain a truncated version for the Jacobi triple product series with odd basis, which reduces to the Andrews–Gordon identity as a special instance. As consequences, we obtain new truncated forms for Euler's pentagonal number theorem, Gauss' theta series on triangular numbers and square numbers, which lead to inequalities for certain partition functions. Moreover, by considering a truncated theta series involving <em>ℓ</em>-regular partitions, we confirm a conjecture proposed by Ballantine and Merca about 6-regular partitions and show that Merca's stronger conjecture on truncated Jacobi triple product series holds when <span><math><mi>R</mi><mo>=</mo><mn>3</mn><mi>S</mi></math></span> for <span><math><mi>S</mi><mo>≥</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"167 ","pages":"Article 102884"},"PeriodicalIF":1.0,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143704752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Further results on r-Euler-Mahonian statistics r-Euler-Mahonian统计的进一步结果
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-03-20 DOI: 10.1016/j.aam.2025.102882
Kaimei Huang, Sherry H.F. Yan
{"title":"Further results on r-Euler-Mahonian statistics","authors":"Kaimei Huang,&nbsp;Sherry H.F. Yan","doi":"10.1016/j.aam.2025.102882","DOIUrl":"10.1016/j.aam.2025.102882","url":null,"abstract":"&lt;div&gt;&lt;div&gt;As natural generalizations of the descent number (&lt;span&gt;&lt;math&gt;&lt;mi&gt;des&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;) and the major index (&lt;span&gt;&lt;math&gt;&lt;mi&gt;maj&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;), Rawlings introduced the notions of the &lt;em&gt;r&lt;/em&gt;-descent number (&lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;des&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) and the &lt;em&gt;r&lt;/em&gt;-major index (&lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;maj&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) for a given positive integer &lt;em&gt;r&lt;/em&gt;. A pair &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;st&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;st&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; of permutation statistics is said to be &lt;em&gt;r&lt;/em&gt;-Euler-Mahonian if &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;des&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;maj&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; are equidistributed over the set &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; of all permutations of &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. The main objective of this paper is to confirm a recent conjecture posed by Liu which asserts that &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;exc&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;den&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-Euler-Mahonian for all positive integers &lt;em&gt;g&lt;/em&gt; and &lt;em&gt;ℓ&lt;/em&gt;, where &lt;span&gt;&lt;math&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;exc&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; denotes the &lt;em&gt;g&lt;/em&gt;-gap &lt;em&gt;ℓ&lt;/em&gt;-level excedance number and &lt;span&gt;&lt;math&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;den&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; denotes the &lt;em&gt;g&lt;/em&gt;-gap &lt;em&gt;ℓ&lt;/em&gt;-level Denert's statistic. This is accomplished via a bijective proof of the equidistribution of &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;exc&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;den&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;des&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;maj&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. Setting &lt;span&gt;&lt;math&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, our result recovers the equidistribution of &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;des&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;maj&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;exc&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;den&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, which was first conjectured by Denert and proved by Foata ","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"167 ","pages":"Article 102882"},"PeriodicalIF":1.0,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143686514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
k-loose elements and k-paving matroids k-松散单元和k-铺装拟阵
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-03-19 DOI: 10.1016/j.aam.2025.102885
Jagdeep Singh
{"title":"k-loose elements and k-paving matroids","authors":"Jagdeep Singh","doi":"10.1016/j.aam.2025.102885","DOIUrl":"10.1016/j.aam.2025.102885","url":null,"abstract":"<div><div>For a matroid of rank <em>r</em> and a non-negative integer <em>k</em>, an element is called <em>k</em>-loose if every circuit containing it has size greater than <span><math><mi>r</mi><mo>−</mo><mi>k</mi></math></span>. Zaslavsky and the author characterized all binary matroids with a 1-loose element. In this paper, we establish a sharp linear bound on the size of a binary matroid, in terms of its rank, that contains a <em>k</em>-loose element. A matroid is called <em>k</em>-paving if all its elements are <em>k</em>-loose. Rajpal showed that for a prime power <em>q</em>, the rank of a <span><math><mi>G</mi><mi>F</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>-matroid that is <em>k</em>-paving is bounded. We provide a bound on the rank of <span><math><mi>G</mi><mi>F</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>-matroids that are cosimple and have two <em>k</em>-loose elements. Consequently, we strengthen the result of Rajpal by providing a bound on the rank of <span><math><mi>G</mi><mi>F</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>-matroids that are <em>k</em>-paving. Additionally, we provide a bound on the size of binary matroids that are <em>k</em>-paving.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"167 ","pages":"Article 102885"},"PeriodicalIF":1.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polynomial resultants and Ramsey numbers of a theta graph 图的多项式结果和拉姆齐数
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-03-18 DOI: 10.1016/j.aam.2025.102881
Meng Liu , Ye Wang
{"title":"Polynomial resultants and Ramsey numbers of a theta graph","authors":"Meng Liu ,&nbsp;Ye Wang","doi":"10.1016/j.aam.2025.102881","DOIUrl":"10.1016/j.aam.2025.102881","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>4</mn></mrow></msub></math></span> be the graph consisting of three internally disjoint paths of length four sharing common endpoints. It is shown <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>4</mn></mrow></msub><mo>)</mo><mo>=</mo><mi>Θ</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>4</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span> as <span><math><mi>k</mi><mo>→</mo><mo>∞</mo></math></span> by computing polynomial resultants.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"167 ","pages":"Article 102881"},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143642896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear orbits of smooth quadric surfaces 光滑二次曲面的线性轨道
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-03-17 DOI: 10.1016/j.aam.2025.102880
Franquiz Caraballo Alba
{"title":"Linear orbits of smooth quadric surfaces","authors":"Franquiz Caraballo Alba","doi":"10.1016/j.aam.2025.102880","DOIUrl":"10.1016/j.aam.2025.102880","url":null,"abstract":"<div><div>The <em>linear orbit</em> of a degree <em>d</em> hypersurface in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is its orbit under the natural action of <span><math><mi>P</mi><mi>GL</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>, in the projective space of dimension <span><math><mi>N</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>+</mo><mi>d</mi></mrow></mtd></mtr><mtr><mtd><mi>d</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mn>1</mn></math></span> parameterizing such hypersurfaces. This action restricted to a specific hypersurface <em>X</em> extends to a rational map from the projectivization of the space of matrices to <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. The class of the graph of this map is the <em>predegree polynomial</em> of its corresponding hypersurface. The objective of this paper is threefold. First, we formally define the predegree polynomial of a hypersurface in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, introduced in the case of plane curves by Aluffi and Faber, and prove some results in the general case. A key result in the general setting is that a partial resolution of said rational map can contain enough information to compute the predegree polynomial of a hypersurface. Second, we compute the leading term of the predegree polynomial of a smooth quadric in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> over an algebraically closed field with characteristic 0, and compute the other coefficients in the specific case <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span>. In analogy to Aluffi and Faber's work, the tool for computing this invariant is producing a (partial) resolution of the previously mentioned rational map which contains enough information to obtain the invariant. Third, we provide a complete resolution of the rational map in the case <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span>, which in principle could be used to compute more refined invariants.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"167 ","pages":"Article 102880"},"PeriodicalIF":1.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143636655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rotational hypersurfaces family satisfying Ln−3G=AG in the n-dimensional Euclidean space n维欧氏空间中满足Ln−3G=AG的旋转超曲面族
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-03-17 DOI: 10.1016/j.aam.2025.102879
Erhan Güler , Nurettin Cenk Turgay
{"title":"Rotational hypersurfaces family satisfying Ln−3G=AG in the n-dimensional Euclidean space","authors":"Erhan Güler ,&nbsp;Nurettin Cenk Turgay","doi":"10.1016/j.aam.2025.102879","DOIUrl":"10.1016/j.aam.2025.102879","url":null,"abstract":"<div><div>In this paper, we investigate rotational hypersurfaces family in <em>n</em>-dimensional Euclidean space <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Our focus is on studying the Gauss map <span><math><mi>G</mi></math></span> of this family with respect to the operator <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, which acts on functions defined on the hypersurfaces. The operator <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> can be viewed as a modified Laplacian and is known by various names, including the Cheng–Yau operator in certain cases. Specifically, we focus on the scenario where <span><math><mi>k</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>3</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. By applying the operator <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msub></math></span> to the Gauss map <span><math><mi>G</mi></math></span>, we establish a classification theorem. This theorem establishes a connection between the <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrix <span><math><mi>A</mi></math></span>, and the Gauss map <span><math><mi>G</mi></math></span> through the equation <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msub><mi>G</mi><mo>=</mo><mi>A</mi><mi>G</mi></math></span>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"167 ","pages":"Article 102879"},"PeriodicalIF":1.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143636651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-coarse spaces, homotopy and homology 半粗空间、同伦与同调
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-02-27 DOI: 10.1016/j.aam.2025.102870
Antonio Rieser, Jonathan Treviño-Marroquín
{"title":"Semi-coarse spaces, homotopy and homology","authors":"Antonio Rieser,&nbsp;Jonathan Treviño-Marroquín","doi":"10.1016/j.aam.2025.102870","DOIUrl":"10.1016/j.aam.2025.102870","url":null,"abstract":"<div><div>We begin the study the algebraic topology of semi-coarse spaces, which are generalizations of coarse spaces that enable one to endow non-trivial ‘coarse-like’ structures to compact metric spaces, something which is impossible in coarse geometry. We first study homotopy in this context, and we then construct homology groups which are invariant under semi-coarse homotopy equivalence. We further show that any undirected graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> induces a semi-coarse structure on its set of vertices <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span>, and that the respective semi-coarse homology is isomorphic to the Vietoris-Rips homology. This, in turn, leads to a homotopy invariance theorem for the Vietoris-Rips homology of undirected graphs.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"167 ","pages":"Article 102870"},"PeriodicalIF":1.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic sequences and parity of partition functions 配分函数的自动序列和奇偶校验
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-02-24 DOI: 10.1016/j.aam.2025.102869
Shi-Chao Chen
{"title":"Automatic sequences and parity of partition functions","authors":"Shi-Chao Chen","doi":"10.1016/j.aam.2025.102869","DOIUrl":"10.1016/j.aam.2025.102869","url":null,"abstract":"<div><div>Let <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> be an integer, <em>ℓ</em> a prime and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> the finite field with <em>ℓ</em> elements. A sequence <span><math><msub><mrow><mo>(</mo><mi>a</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> is called <em>k</em>-automatic if there exists a deterministic finite automaton with output that reads the canonical base-<em>k</em> representation of <em>n</em> and the outputs <span><math><mi>a</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. We apply the properties of automatic sequences to prove the transcendence of a formal power series over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> related to infinite products. As applications, the parity results of various partition functions are obtained, including the root partition function and the prime parts partition function. We also establish the transcendence of the power series associated with holomorphic modular forms with integer coefficients.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"166 ","pages":"Article 102869"},"PeriodicalIF":1.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable multivariate Narayana polynomials and labeled plane trees 稳定多元Narayana多项式与标记平面树
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-02-24 DOI: 10.1016/j.aam.2025.102867
Harold R.L. Yang , Philip B. Zhang
{"title":"Stable multivariate Narayana polynomials and labeled plane trees","authors":"Harold R.L. Yang ,&nbsp;Philip B. Zhang","doi":"10.1016/j.aam.2025.102867","DOIUrl":"10.1016/j.aam.2025.102867","url":null,"abstract":"<div><div>In this paper, we introduce stable multivariate generalizations of Narayana polynomials of types <em>A</em> and <em>B</em>. We give an insertion algorithm for labeled plane trees and introduce the notion of improper edges. Our polynomials are multivariate generating polynomials of labeled plane trees and can be generated by a grammatical labeling based on a context-free grammar. Our proof of real stability uses a characterization of stable-preserving linear operators due to Borcea and Brändén. In particular, we get an alternative multivariate stable refinement of the second-order Eulerian polynomials, which is different from the one given by Haglund and Visontai.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"166 ","pages":"Article 102867"},"PeriodicalIF":1.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coefficients of the Tutte polynomial and minimal edge cuts of a graph 图的图特多项式系数和最小切边
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-02-21 DOI: 10.1016/j.aam.2025.102868
Haiyan Chen, Mingxu Guo
{"title":"Coefficients of the Tutte polynomial and minimal edge cuts of a graph","authors":"Haiyan Chen,&nbsp;Mingxu Guo","doi":"10.1016/j.aam.2025.102868","DOIUrl":"10.1016/j.aam.2025.102868","url":null,"abstract":"<div><div>Let <em>G</em> be a <span><math><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-edge connected graph with order <em>n</em> and size <em>m</em>. From a general result on the coefficients of polymatroid Tutte polynomial, Guan et al. (2023) <span><span>[16]</span></span> derived that<span><span><span><math><mo>[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>g</mi><mo>−</mo><mi>i</mi></mrow></msup><mo>]</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>+</mo><mi>i</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is the Tutte polynomial of <em>G</em> and <span><math><mi>g</mi><mo>=</mo><mi>m</mi><mo>−</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>. Recall that the coefficients of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mi>y</mi><mo>)</mo></math></span> have many combinatorial explanations, including spanning trees, parking functions, superstable configurations (or recurrent configurations) of the Abelian Sandpile Model (ASM), and so on. Here we find that the above result has a simple and direct proof in terms of the superstable configurations of ASM. Motivated by this, in this paper, by constructing mappings between different sets, we first establish a relationship between non-superstable configurations and minimal edge cuts of <em>G</em>, then we generalize the above result from <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span> to <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>&lt;</mo><mfrac><mrow><mn>3</mn><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. In precise,<span><span><span><math><mo>[</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>g</mi><mo>−</mo><mi>i</mi></mrow></msup><mo>]</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>+</mo><mi>i</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>i</mi></mrow></munderover><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>+</mo><mi>i</mi><mo>−</mo><mi>j</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>|</mo><msub><mrow><mi>EC</mi></mrow><mrow><mi>j</mi></mrow>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"166 ","pages":"Article 102868"},"PeriodicalIF":1.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143453998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信