Advances in Applied Mathematics最新文献

筛选
英文 中文
Binary sequences meet the Fibonacci sequence 二进制序列满足斐波那契序列
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-05-29 DOI: 10.1016/j.aam.2025.102914
Piotr Miska , Bartosz Sobolewski , Maciej Ulas
{"title":"Binary sequences meet the Fibonacci sequence","authors":"Piotr Miska ,&nbsp;Bartosz Sobolewski ,&nbsp;Maciej Ulas","doi":"10.1016/j.aam.2025.102914","DOIUrl":"10.1016/j.aam.2025.102914","url":null,"abstract":"<div><div>We introduce a new family of number sequences <span><math><msub><mrow><mo>(</mo><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span>, governed by the recurrence relation<span><span><span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>a</mi><mi>f</mi><mo>(</mo><mi>n</mi><mo>−</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>b</mi><mi>f</mi><mo>(</mo><mi>n</mi><mo>−</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mn>2</mn><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>u</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> is a sequence with values <span><math><mn>0</mn><mo>,</mo><mn>1</mn></math></span>. Our study focuses on the properties of the sequence of quotients <span><math><mi>h</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and its set of values <span><math><mi>V</mi><mo>(</mo><mi>f</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>h</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo></math></span> for various <strong>u</strong>. We give a sufficient condition for finiteness of <span><math><mi>V</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> and automaticity of <span><math><msub><mrow><mo>(</mo><mi>h</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span>, which holds in particular when <strong>u</strong> is the famous Prouhet-Thue-Morse sequence. In the automatic case, a constructive approach is used, with the help of the software <span>Walnut</span>. On the other hand, we prove that the set <span><math><mi>V</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is infinite for other special binary sequences <strong>u</strong>, and obtain a trichotomy in its topological type when <strong>u</strong> is eventually periodic.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"169 ","pages":"Article 102914"},"PeriodicalIF":1.0,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144169097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Depth and regularity of tableau ideals 画面理想的深度和规律性
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-05-26 DOI: 10.1016/j.aam.2025.102913
Do Trong Hoang , Thanh Vu
{"title":"Depth and regularity of tableau ideals","authors":"Do Trong Hoang ,&nbsp;Thanh Vu","doi":"10.1016/j.aam.2025.102913","DOIUrl":"10.1016/j.aam.2025.102913","url":null,"abstract":"<div><div>We compute the depth and regularity of ideals associated with arbitrary fillings of positive integers to a Young diagram, called the tableau ideals.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"169 ","pages":"Article 102913"},"PeriodicalIF":1.0,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144138028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
q-Super Catalan numbers: Combinatorial identities, generating functions, and Narayana refinements q-超级加泰罗尼亚数:组合恒等式,生成函数,和Narayana细化
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-05-23 DOI: 10.1016/j.aam.2025.102911
Arthur Rodelet–Causse , Lenny Tevlin
{"title":"q-Super Catalan numbers: Combinatorial identities, generating functions, and Narayana refinements","authors":"Arthur Rodelet–Causse ,&nbsp;Lenny Tevlin","doi":"10.1016/j.aam.2025.102911","DOIUrl":"10.1016/j.aam.2025.102911","url":null,"abstract":"<div><div>We derive a number of combinatorial identities satisfied by the <em>q</em>-super Catalan numbers. In particular, we extend some of the known combinatorial identities (Touchard, Koshy, Reed Dawson) to the <em>q</em>-super Catalan numbers.</div><div>Next, we introduce some <em>q</em>-convolution identities involving q-central binomial and q-Catalan numbers, and derive a generating function for <em>q</em>-Catalan numbers.</div><div>Then we introduce Narayana-type refinements of the super Catalan numbers. We prove algebraically the <em>γ</em>-positivity of those refinements and give a combinatorial proof in a special case through the type B analog of noncrossing partitions. Then we introduce their natural <em>q</em>-analogs, prove their <em>q</em>-<em>γ</em>-positivity, and prove some identities they satisfy, generalizing identities of Kreweras <span><span>[17]</span></span> and Le Jen-Shoo <span><span>[11]</span></span>. Using yet another identity, we prove that these refinements are positive integer polynomials in <em>q</em>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"169 ","pages":"Article 102911"},"PeriodicalIF":1.0,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144116089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equivalence classes of lower and upper descent weak Bruhat intervals 上下下降弱Bruhat区间的等价类
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-05-20 DOI: 10.1016/j.aam.2025.102910
Seung-Il Choi , Sun-Young Nam , Young-Tak Oh
{"title":"Equivalence classes of lower and upper descent weak Bruhat intervals","authors":"Seung-Il Choi ,&nbsp;Sun-Young Nam ,&nbsp;Young-Tak Oh","doi":"10.1016/j.aam.2025.102910","DOIUrl":"10.1016/j.aam.2025.102910","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Int&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; denote the set of nonempty left weak Bruhat intervals in the symmetric group &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. We investigate the equivalence relation &lt;figure&gt;&lt;img&gt;&lt;/figure&gt; on &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Int&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;figure&gt;&lt;img&gt;&lt;/figure&gt; if and only if there exists a descent-preserving poset isomorphism between &lt;em&gt;I&lt;/em&gt; and &lt;em&gt;J&lt;/em&gt;. For each equivalence class &lt;em&gt;C&lt;/em&gt; of &lt;figure&gt;&lt;img&gt;&lt;/figure&gt;, a partial order ⪯ is defined by &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⪯&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; if and only if &lt;span&gt;&lt;math&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;⪯&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;. Kim–Lee–Oh (2024) showed that the poset &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;⪯&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is isomorphic to a right weak Bruhat interval.&lt;/div&gt;&lt;div&gt;In this paper, we focus on lower and upper descent weak Bruhat intervals, specifically those of the form &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; or &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is the longest element in the parabolic subgroup &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, generated by &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; for a subset &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is the longest element among the minimal-length representatives of left &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;mo&gt;∖&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-cosets in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. We begin by providing a poset-theoretic characterization of the equivalence relation &lt;figure&gt;&lt;img&gt;&lt;/figure&gt;. Using","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"169 ","pages":"Article 102910"},"PeriodicalIF":1.0,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144088875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A result for hemi-bundled cross-intersecting families 半捆绑交叉族的结果
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-05-19 DOI: 10.1016/j.aam.2025.102912
Yongjiang Wu, Lihua Feng, Yongtao Li
{"title":"A result for hemi-bundled cross-intersecting families","authors":"Yongjiang Wu,&nbsp;Lihua Feng,&nbsp;Yongtao Li","doi":"10.1016/j.aam.2025.102912","DOIUrl":"10.1016/j.aam.2025.102912","url":null,"abstract":"<div><div>Two families <span><math><mi>F</mi></math></span> and <span><math><mi>G</mi></math></span> are called cross-intersecting if for every <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> and <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span>, the intersection <span><math><mi>F</mi><mo>∩</mo><mi>G</mi></math></span> is non-empty. It is significant to determine the maximum sum of sizes of cross-intersecting families under the additional assumption that one of the two families is intersecting. Such a pair of families is said to be hemi-bundled. In particular, Frankl (2016) proved that for <span><math><mi>k</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi><mo>+</mo><mi>t</mi></math></span>, if <span><math><mi>F</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>G</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are cross-intersecting families, in which <span><math><mi>F</mi></math></span> is non-empty and <span><math><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-intersecting, then <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>+</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span>. This bound is achieved when <span><math><mi>F</mi></math></span> consists of a single set. In this paper, we generalize this result under the constraint <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>≥</mo><mi>r</mi></math></span> for every <span><math><mi>r</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>t</mi><mo>+</mo><mn>1</mn></math></span>. Moreover, we investigate the stability results of Katona's theorem for non-uniform families with the <em>s</em>-union property. Our result extends the stabilities established by Frankl (2017) and Li and Wu (2024). As applications, we revisit a recent result of Frankl and Wang (2024) as well as a result of Kupavskii (2018). Furthermore, we determine the extremal families in these two results.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"169 ","pages":"Article 102912"},"PeriodicalIF":1.0,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144084372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissections of lacunary eta quotients and identically vanishing coefficients 空穴eta商和同消系数的剖分
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-04-30 DOI: 10.1016/j.aam.2025.102902
Tim Huber , James McLaughlin , Dongxi Ye
{"title":"Dissections of lacunary eta quotients and identically vanishing coefficients","authors":"Tim Huber ,&nbsp;James McLaughlin ,&nbsp;Dongxi Ye","doi":"10.1016/j.aam.2025.102902","DOIUrl":"10.1016/j.aam.2025.102902","url":null,"abstract":"&lt;div&gt;&lt;div&gt;For any function &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; define&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; Now suppose &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; are two functions whose &lt;em&gt;m&lt;/em&gt;-dissections are given by&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; If it is the case that &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;⟺&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, then we say that &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102902"},"PeriodicalIF":1.0,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143888196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of the automorphism group of a graph on its PageRank scores of vertices 图的自同构群对顶点PageRank分数的影响
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-04-22 DOI: 10.1016/j.aam.2025.102900
Dein Wong , Qi Zhou , Xinlei Wang
{"title":"Influence of the automorphism group of a graph on its PageRank scores of vertices","authors":"Dein Wong ,&nbsp;Qi Zhou ,&nbsp;Xinlei Wang","doi":"10.1016/j.aam.2025.102900","DOIUrl":"10.1016/j.aam.2025.102900","url":null,"abstract":"<div><div>Google's success derives in large part from its PageRank algorithm, which assign a score to every web page according to its importance. Recently, G. Modjtaba et al. (2021) <span><span>[19]</span></span> proved that similar vertices in a graph have the same PageRank score and they proposed a conjecture, suspecting that two graphs are completely non-Co-PR if they are non-Co-PR graphs. The investigation of this paper mainly concerns the influence of the automorphism group of a graph on its PageRank scores of vertices. The main results of this article are as follows.<ul><li><span>1.</span><span><div>Based on matrix analysis, two conditions on what kinds of vertices have the same PageRank score are obtained.</div></span></li><li><span>2.</span><span><div>Four techniques for constructing Co-PR graphs are established.</div></span></li><li><span>3.</span><span><div>A non-regular connected graph of order <em>n</em>, with <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span> as PR scores of most of its vertices, is constructed, which provides a negative answer to Modjtaba's conjecture above.</div></span></li></ul></div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102900"},"PeriodicalIF":1.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143855383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Counting flows of b-compatible graphs 计算 b 兼容图的流量
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-04-14 DOI: 10.1016/j.aam.2025.102901
Houshan Fu , Xiangyu Ren , Suijie Wang
{"title":"Counting flows of b-compatible graphs","authors":"Houshan Fu ,&nbsp;Xiangyu Ren ,&nbsp;Suijie Wang","doi":"10.1016/j.aam.2025.102901","DOIUrl":"10.1016/j.aam.2025.102901","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Kochol introduced the assigning polynomial &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; to count nowhere-zero &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-flows of a graph &lt;em&gt;G&lt;/em&gt;, where &lt;em&gt;A&lt;/em&gt; is a finite Abelian group and &lt;em&gt;α&lt;/em&gt; is a &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-assigning from a family &lt;span&gt;&lt;math&gt;&lt;mi&gt;Λ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; of certain nonempty vertex subsets of &lt;em&gt;G&lt;/em&gt; to &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. We introduce the concepts of &lt;em&gt;b&lt;/em&gt;-compatible graph and &lt;em&gt;b&lt;/em&gt;-compatible broken bond to give an explicit formula for the assigning polynomials and to examine their coefficients. More specifically, for a function &lt;span&gt;&lt;math&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; be a &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-assigning of &lt;em&gt;G&lt;/em&gt; such that for each &lt;span&gt;&lt;math&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Λ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; if and only if &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. We show that for any &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-assigning &lt;em&gt;α&lt;/em&gt; of &lt;em&gt;G&lt;/em&gt;, if there exists a function &lt;span&gt;&lt;math&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;em&gt;G&lt;/em&gt; is &lt;em&gt;b&lt;/em&gt;-compatible and &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, then the assigning polynomial &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; has the &lt;em&gt;b&lt;/em&gt;-compatible spanning subgraph expansion&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;munder&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mrow&gt;&lt;mtext&gt; is&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;b&lt;/mtext&gt;&lt;mtext&gt;-compatible&lt;/mtext&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; and is the following form&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102901"},"PeriodicalIF":1.0,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143826047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The maximum number of cycles in a triangular-grid billiards system with a given perimeter 给定周长的三角形网格台球系统的最大循环数
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-04-14 DOI: 10.1016/j.aam.2025.102888
Honglin Zhu
{"title":"The maximum number of cycles in a triangular-grid billiards system with a given perimeter","authors":"Honglin Zhu","doi":"10.1016/j.aam.2025.102888","DOIUrl":"10.1016/j.aam.2025.102888","url":null,"abstract":"<div><div>Given a grid polygon <em>P</em> in a grid of equilateral triangles, Defant and Jiradilok considered a billiards system where beams of light bounce around inside <em>P</em>. We study the relationship between the perimeter <span><math><mi>perim</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> of <em>P</em> and the number of different trajectories <span><math><mi>cyc</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> that the billiards system has. Resolving a conjecture of Defant and Jiradilok, we prove the sharp inequality <span><math><mi>cyc</mi><mo>(</mo><mi>P</mi><mo>)</mo><mo>≤</mo><mo>(</mo><mi>perim</mi><mo>(</mo><mi>P</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>)</mo><mo>/</mo><mn>4</mn></math></span> and characterize the equality cases.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102888"},"PeriodicalIF":1.0,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143826046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colored q-Stirling and q-Lah numbers: A new view continued 有色q-Stirling数和q-Lah数:一个新的观点继续
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2025-04-10 DOI: 10.1016/j.aam.2025.102889
Sen-Peng Eu , Louis Kao , Juei-Yin Lin
{"title":"Colored q-Stirling and q-Lah numbers: A new view continued","authors":"Sen-Peng Eu ,&nbsp;Louis Kao ,&nbsp;Juei-Yin Lin","doi":"10.1016/j.aam.2025.102889","DOIUrl":"10.1016/j.aam.2025.102889","url":null,"abstract":"<div><div>Cai and Readdy proposed a new framework for studying the <em>q</em>-analogue <span><math><mi>f</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> of a combinatorial structure <em>S</em>. Specifically, the aim is to identify two statistics over <em>S</em> and a proper subset <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <em>S</em> such that <span><math><mi>f</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> represents the <em>q</em>-<span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-expansion over <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, and to explore the poset and topological interpretations of this expansion. Cai and Readdy provided comprehensive profiles for classical Stirling numbers of both kinds within this framework. In this work, we extend Cai and Readdy's results to colored <em>q</em>-Stirling numbers of both kinds, as well as colored <em>q</em>-Lah numbers. We also briefly discuss <em>q</em>-Stirling and <em>q</em>-Lah numbers of type <em>D</em>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102889"},"PeriodicalIF":1.0,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143808186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信