Jianfeng Wang , Jing Wang , Maurizio Brunetti , Francesco Belardo , Ligong Wang
{"title":"Developments on the Hoffman program of graphs","authors":"Jianfeng Wang , Jing Wang , Maurizio Brunetti , Francesco Belardo , Ligong Wang","doi":"10.1016/j.aam.2025.102915","DOIUrl":null,"url":null,"abstract":"<div><div>For each squared graph matrix <em>M</em>, the Hoffman program consists of two aspects: finding all the possible limit points of <em>M</em>-spectral radii of graphs and detecting all the connected graphs whose <em>M</em>-spectral radius does not exceed a fixed limit point. In this survey, we summarize the results on this topic concerning several graph matrices, including the adjacency, the Laplacian, the signless Laplacian, the Hermitian adjacency and the skew-adjacency matrix of graphs. The correspondent problems related to tensors of hypergraphs are also discussed. Moreover, we obtain new results about the Hoffman program with relation to the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-matrix. In particular, we get two generalized versions of it applicable to nonnegative symmetric matrices with fractional elements. We also retrieve the limit points of spectral radii of (signless) Laplacian matrices of graphs less than <span><math><mn>2</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mrow><mo>(</mo><msup><mrow><mo>(</mo><mn>54</mn><mo>−</mo><mn>6</mn><msqrt><mrow><mn>33</mn></mrow></msqrt><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><mn>54</mn><mo>+</mo><mn>6</mn><msqrt><mrow><mn>33</mn></mrow></msqrt><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"169 ","pages":"Article 102915"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000776","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For each squared graph matrix M, the Hoffman program consists of two aspects: finding all the possible limit points of M-spectral radii of graphs and detecting all the connected graphs whose M-spectral radius does not exceed a fixed limit point. In this survey, we summarize the results on this topic concerning several graph matrices, including the adjacency, the Laplacian, the signless Laplacian, the Hermitian adjacency and the skew-adjacency matrix of graphs. The correspondent problems related to tensors of hypergraphs are also discussed. Moreover, we obtain new results about the Hoffman program with relation to the -matrix. In particular, we get two generalized versions of it applicable to nonnegative symmetric matrices with fractional elements. We also retrieve the limit points of spectral radii of (signless) Laplacian matrices of graphs less than .
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.