Binary sequences meet the Fibonacci sequence

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Piotr Miska , Bartosz Sobolewski , Maciej Ulas
{"title":"Binary sequences meet the Fibonacci sequence","authors":"Piotr Miska ,&nbsp;Bartosz Sobolewski ,&nbsp;Maciej Ulas","doi":"10.1016/j.aam.2025.102914","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a new family of number sequences <span><math><msub><mrow><mo>(</mo><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span>, governed by the recurrence relation<span><span><span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>a</mi><mi>f</mi><mo>(</mo><mi>n</mi><mo>−</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>b</mi><mi>f</mi><mo>(</mo><mi>n</mi><mo>−</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mn>2</mn><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>u</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> is a sequence with values <span><math><mn>0</mn><mo>,</mo><mn>1</mn></math></span>. Our study focuses on the properties of the sequence of quotients <span><math><mi>h</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and its set of values <span><math><mi>V</mi><mo>(</mo><mi>f</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>h</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo></math></span> for various <strong>u</strong>. We give a sufficient condition for finiteness of <span><math><mi>V</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> and automaticity of <span><math><msub><mrow><mo>(</mo><mi>h</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span>, which holds in particular when <strong>u</strong> is the famous Prouhet-Thue-Morse sequence. In the automatic case, a constructive approach is used, with the help of the software <span>Walnut</span>. On the other hand, we prove that the set <span><math><mi>V</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is infinite for other special binary sequences <strong>u</strong>, and obtain a trichotomy in its topological type when <strong>u</strong> is eventually periodic.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"169 ","pages":"Article 102914"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000764","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new family of number sequences (f(n))nN, governed by the recurrence relationf(n)=af(nun1)+bf(nun2), where u=(un)nN is a sequence with values 0,1. Our study focuses on the properties of the sequence of quotients h(n)=f(n+1)/f(n) and its set of values V(f)={h(n):nN} for various u. We give a sufficient condition for finiteness of V(f) and automaticity of (h(n))nN, which holds in particular when u is the famous Prouhet-Thue-Morse sequence. In the automatic case, a constructive approach is used, with the help of the software Walnut. On the other hand, we prove that the set V(f) is infinite for other special binary sequences u, and obtain a trichotomy in its topological type when u is eventually periodic.
二进制序列满足斐波那契序列
我们引入了一类新的数列(f(n))n∈n,由递归关系f(n)=af(n−un−1)+bf(n−un−2)控制,其中u=(un)n∈n是一个值为0,1的数列。研究了不同u的商数列h(n)=f(n+1)/f(n)及其值集V(f)={h(n):n∈n}的性质,给出了V(f)有限和(h(n))n∈n的自动性的充分条件,特别是当u是著名的prouheet - thue - morse数列时。在自动案例中,在软件Walnut的帮助下,采用了一种建设性的方法。另一方面,我们证明了集合V(f)对于其他特殊的二值序列u是无限的,并得到了当u最终为周期时其拓扑类型的三分法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信