{"title":"自修正差分上升序列","authors":"Giulio Cerbai , Anders Claesson , Bruce E. Sagan","doi":"10.1016/j.aam.2025.102929","DOIUrl":null,"url":null,"abstract":"<div><div>Ascent sequences play a key role in the combinatorics of Fishburn structures. Difference ascent sequences are a natural generalization obtained by replacing ascents with <em>d</em>-ascents. We have recently extended the so-called hat map to difference ascent sequences, and self-modified difference ascent sequences are the fixed points under this map. We characterize self-modified difference ascent sequences and enumerate them in terms of certain generalized Fibonacci polynomials. Furthermore, we describe the corresponding subset of <em>d</em>-Fishburn permutations.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"170 ","pages":"Article 102929"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-modified difference ascent sequences\",\"authors\":\"Giulio Cerbai , Anders Claesson , Bruce E. Sagan\",\"doi\":\"10.1016/j.aam.2025.102929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ascent sequences play a key role in the combinatorics of Fishburn structures. Difference ascent sequences are a natural generalization obtained by replacing ascents with <em>d</em>-ascents. We have recently extended the so-called hat map to difference ascent sequences, and self-modified difference ascent sequences are the fixed points under this map. We characterize self-modified difference ascent sequences and enumerate them in terms of certain generalized Fibonacci polynomials. Furthermore, we describe the corresponding subset of <em>d</em>-Fishburn permutations.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"170 \",\"pages\":\"Article 102929\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885825000910\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000910","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Ascent sequences play a key role in the combinatorics of Fishburn structures. Difference ascent sequences are a natural generalization obtained by replacing ascents with d-ascents. We have recently extended the so-called hat map to difference ascent sequences, and self-modified difference ascent sequences are the fixed points under this map. We characterize self-modified difference ascent sequences and enumerate them in terms of certain generalized Fibonacci polynomials. Furthermore, we describe the corresponding subset of d-Fishburn permutations.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.