自修正差分上升序列

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Giulio Cerbai , Anders Claesson , Bruce E. Sagan
{"title":"自修正差分上升序列","authors":"Giulio Cerbai ,&nbsp;Anders Claesson ,&nbsp;Bruce E. Sagan","doi":"10.1016/j.aam.2025.102929","DOIUrl":null,"url":null,"abstract":"<div><div>Ascent sequences play a key role in the combinatorics of Fishburn structures. Difference ascent sequences are a natural generalization obtained by replacing ascents with <em>d</em>-ascents. We have recently extended the so-called hat map to difference ascent sequences, and self-modified difference ascent sequences are the fixed points under this map. We characterize self-modified difference ascent sequences and enumerate them in terms of certain generalized Fibonacci polynomials. Furthermore, we describe the corresponding subset of <em>d</em>-Fishburn permutations.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"170 ","pages":"Article 102929"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-modified difference ascent sequences\",\"authors\":\"Giulio Cerbai ,&nbsp;Anders Claesson ,&nbsp;Bruce E. Sagan\",\"doi\":\"10.1016/j.aam.2025.102929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ascent sequences play a key role in the combinatorics of Fishburn structures. Difference ascent sequences are a natural generalization obtained by replacing ascents with <em>d</em>-ascents. We have recently extended the so-called hat map to difference ascent sequences, and self-modified difference ascent sequences are the fixed points under this map. We characterize self-modified difference ascent sequences and enumerate them in terms of certain generalized Fibonacci polynomials. Furthermore, we describe the corresponding subset of <em>d</em>-Fishburn permutations.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"170 \",\"pages\":\"Article 102929\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885825000910\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000910","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

上升序列在菲什伯恩构造组合学中起着关键作用。差分上升序列是用d-上升序列代替上升序列得到的自然推广。我们最近将所谓的hat映射扩展到差分上升序列,并且自修正差分上升序列是该映射下的不动点。我们对自修正差分上升序列进行了刻画,并用一定的广义斐波那契多项式对其进行了枚举。进一步,我们描述了d-Fishburn排列的相应子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-modified difference ascent sequences
Ascent sequences play a key role in the combinatorics of Fishburn structures. Difference ascent sequences are a natural generalization obtained by replacing ascents with d-ascents. We have recently extended the so-called hat map to difference ascent sequences, and self-modified difference ascent sequences are the fixed points under this map. We characterize self-modified difference ascent sequences and enumerate them in terms of certain generalized Fibonacci polynomials. Furthermore, we describe the corresponding subset of d-Fishburn permutations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信