霍夫曼图程序的发展

IF 1.3 3区 数学 Q3 MATHEMATICS, APPLIED
Jianfeng Wang , Jing Wang , Maurizio Brunetti , Francesco Belardo , Ligong Wang
{"title":"霍夫曼图程序的发展","authors":"Jianfeng Wang ,&nbsp;Jing Wang ,&nbsp;Maurizio Brunetti ,&nbsp;Francesco Belardo ,&nbsp;Ligong Wang","doi":"10.1016/j.aam.2025.102915","DOIUrl":null,"url":null,"abstract":"<div><div>For each squared graph matrix <em>M</em>, the Hoffman program consists of two aspects: finding all the possible limit points of <em>M</em>-spectral radii of graphs and detecting all the connected graphs whose <em>M</em>-spectral radius does not exceed a fixed limit point. In this survey, we summarize the results on this topic concerning several graph matrices, including the adjacency, the Laplacian, the signless Laplacian, the Hermitian adjacency and the skew-adjacency matrix of graphs. The correspondent problems related to tensors of hypergraphs are also discussed. Moreover, we obtain new results about the Hoffman program with relation to the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-matrix. In particular, we get two generalized versions of it applicable to nonnegative symmetric matrices with fractional elements. We also retrieve the limit points of spectral radii of (signless) Laplacian matrices of graphs less than <span><math><mn>2</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mrow><mo>(</mo><msup><mrow><mo>(</mo><mn>54</mn><mo>−</mo><mn>6</mn><msqrt><mrow><mn>33</mn></mrow></msqrt><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><mn>54</mn><mo>+</mo><mn>6</mn><msqrt><mrow><mn>33</mn></mrow></msqrt><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"169 ","pages":"Article 102915"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developments on the Hoffman program of graphs\",\"authors\":\"Jianfeng Wang ,&nbsp;Jing Wang ,&nbsp;Maurizio Brunetti ,&nbsp;Francesco Belardo ,&nbsp;Ligong Wang\",\"doi\":\"10.1016/j.aam.2025.102915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For each squared graph matrix <em>M</em>, the Hoffman program consists of two aspects: finding all the possible limit points of <em>M</em>-spectral radii of graphs and detecting all the connected graphs whose <em>M</em>-spectral radius does not exceed a fixed limit point. In this survey, we summarize the results on this topic concerning several graph matrices, including the adjacency, the Laplacian, the signless Laplacian, the Hermitian adjacency and the skew-adjacency matrix of graphs. The correspondent problems related to tensors of hypergraphs are also discussed. Moreover, we obtain new results about the Hoffman program with relation to the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-matrix. In particular, we get two generalized versions of it applicable to nonnegative symmetric matrices with fractional elements. We also retrieve the limit points of spectral radii of (signless) Laplacian matrices of graphs less than <span><math><mn>2</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mrow><mo>(</mo><msup><mrow><mo>(</mo><mn>54</mn><mo>−</mo><mn>6</mn><msqrt><mrow><mn>33</mn></mrow></msqrt><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><mn>54</mn><mo>+</mo><mn>6</mn><msqrt><mrow><mn>33</mn></mrow></msqrt><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow></math></span>.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"169 \",\"pages\":\"Article 102915\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885825000776\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000776","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于每一个图的平方矩阵M, Hoffman程序包括两个方面:寻找图的M谱半径的所有可能的极限点和检测图的M谱半径不超过一个固定的极限点的所有连通图。本文总结了图的邻接矩阵、拉普拉斯矩阵、无符号拉普拉斯矩阵、厄米邻接矩阵和斜邻接矩阵在这一问题上的研究成果。讨论了超图张量的相关问题。此外,我们还得到了与a α-矩阵有关的Hoffman规划的新结果。特别地,我们得到了两个适用于分数元非负对称矩阵的推广版本。我们还检索了小于2+13((54−633)13+(54+633)13)图的(无符号)拉普拉斯矩阵的谱半径的极限点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developments on the Hoffman program of graphs
For each squared graph matrix M, the Hoffman program consists of two aspects: finding all the possible limit points of M-spectral radii of graphs and detecting all the connected graphs whose M-spectral radius does not exceed a fixed limit point. In this survey, we summarize the results on this topic concerning several graph matrices, including the adjacency, the Laplacian, the signless Laplacian, the Hermitian adjacency and the skew-adjacency matrix of graphs. The correspondent problems related to tensors of hypergraphs are also discussed. Moreover, we obtain new results about the Hoffman program with relation to the Aα-matrix. In particular, we get two generalized versions of it applicable to nonnegative symmetric matrices with fractional elements. We also retrieve the limit points of spectral radii of (signless) Laplacian matrices of graphs less than 2+13((54633)13+(54+633)13).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信