On the average number of cycles in conjugacy class products

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jesse Campion Loth, Amarpreet Rattan
{"title":"On the average number of cycles in conjugacy class products","authors":"Jesse Campion Loth,&nbsp;Amarpreet Rattan","doi":"10.1016/j.aam.2025.102926","DOIUrl":null,"url":null,"abstract":"<div><div>We show that for the product of permutations from two fixed point free conjugacy classes, the average number of cycles is always very similar. Specifically, our main result is that for a randomly chosen pair of fixed point free permutations of cycle types <em>α</em> and <em>β</em>, the average number of cycles in their product is between <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mn>3</mn></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>+</mo><mn>1</mn></math></span>, where <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the harmonic number.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"170 ","pages":"Article 102926"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000880","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We show that for the product of permutations from two fixed point free conjugacy classes, the average number of cycles is always very similar. Specifically, our main result is that for a randomly chosen pair of fixed point free permutations of cycle types α and β, the average number of cycles in their product is between Hn3 and Hn+1, where Hn is the harmonic number.
共轭类积的平均循环数
证明了两个无不动点共轭类的置换乘积的平均循环数总是非常相似的。具体地说,我们的主要结果是,对于随机选择的一对循环类型为α和β的不动点自由排列,它们乘积中的平均循环数介于Hn−3和Hn+1之间,其中Hn为调和数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信