Advances in Applied Mathematics最新文献

筛选
英文 中文
Minimal skew semistandard tableaux and the Hillman–Grassl correspondence 最小倾斜半标准表和希尔曼-格拉斯尔对应关系
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2024-10-14 DOI: 10.1016/j.aam.2024.102792
Alejandro H. Morales , Greta Panova , GaYee Park
{"title":"Minimal skew semistandard tableaux and the Hillman–Grassl correspondence","authors":"Alejandro H. Morales ,&nbsp;Greta Panova ,&nbsp;GaYee Park","doi":"10.1016/j.aam.2024.102792","DOIUrl":"10.1016/j.aam.2024.102792","url":null,"abstract":"<div><div>Standard tableaux of skew shape are fundamental objects in enumerative and algebraic combinatorics and no product formula for the number is known. In 2014, Naruse gave a formula <span><span>(NHLF)</span></span> as a positive sum over excited diagrams of products of hook-lengths. Subsequently, Morales, Pak, and Panova gave a <em>q</em>-analogue of this formula in terms of skew semistandard tableaux (SSYT). They also showed, partly algebraically, that the Hillman–Grassl bijection, restricted to skew semistandard tableaux, is behind their <em>q</em>-analogue. We study the problem of circumventing the algebraic part and proving the bijection completely combinatorially, which we do for the case of border strips. For general skew shapes, we define minimal semistandard Young tableaux, that are in correspondence with excited diagrams via a new description of the Hillman–Grassl bijection and have an analogue of excited moves. Lastly, we relate the minimal skew SSYT with the terms of the Okounkov-Olshanski formula <span><span>(OOF)</span></span> for counting standard tableaux of skew shape. Our construction immediately implies that the summands in the NHLF are less than the summands in the OOF and we characterize the shapes where both formulas have the same number of summands.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"163 ","pages":"Article 102792"},"PeriodicalIF":1.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proof of a conjecture about Parrondo's paradox for two-armed slot machines 双臂老虎机帕隆多悖论猜想的证明
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2024-10-03 DOI: 10.1016/j.aam.2024.102793
Huaijin Liang , Zengjing Chen
{"title":"Proof of a conjecture about Parrondo's paradox for two-armed slot machines","authors":"Huaijin Liang ,&nbsp;Zengjing Chen","doi":"10.1016/j.aam.2024.102793","DOIUrl":"10.1016/j.aam.2024.102793","url":null,"abstract":"<div><div>The 1936 Mills Futurity slot machine had the feature that, if a player loses 10 times in a row, the 10 lost coins are returned. Ethier and Lee (2010) studied a generalized version of this machine, with 10 replaced by deterministic parameter <em>J</em>. They established the Parrondo effect for a hypothetical two-armed machine with the Futurity award. Specifically, arm <em>A</em> and arm <em>B</em>, played individually, are asymptotically fair, but when alternated randomly (the so-called random mixture strategy), the casino makes money in the long run. They also considered the nonrandom periodic pattern strategy for patterns with <em>r A</em>s and <em>s B</em>s (e.g., <span><math><mi>A</mi><mi>B</mi><mi>A</mi><mi>B</mi><mi>B</mi></math></span> if <span><math><mi>r</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>s</mi><mo>=</mo><mn>3</mn></math></span>). They established the Parrondo effect if <span><math><mi>r</mi><mo>+</mo><mi>s</mi></math></span> divides <em>J</em>, and conjectured it in four other situations, including the case <span><math><mi>J</mi><mo>=</mo><mn>2</mn></math></span> with <span><math><mi>r</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mi>s</mi><mo>≥</mo><mn>1</mn></math></span>. We prove the conjecture in the latter case.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"163 ","pages":"Article 102793"},"PeriodicalIF":1.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A topological approach to mapping space signatures 映射空间特征的拓扑方法
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2024-09-27 DOI: 10.1016/j.aam.2024.102787
Chad Giusti , Darrick Lee , Vidit Nanda , Harald Oberhauser
{"title":"A topological approach to mapping space signatures","authors":"Chad Giusti ,&nbsp;Darrick Lee ,&nbsp;Vidit Nanda ,&nbsp;Harald Oberhauser","doi":"10.1016/j.aam.2024.102787","DOIUrl":"10.1016/j.aam.2024.102787","url":null,"abstract":"<div><div>A common approach for describing classes of functions and probability measures on a topological space <span><math><mi>X</mi></math></span> is to construct a suitable map Φ from <span><math><mi>X</mi></math></span> into a vector space, where linear methods can be applied to address both problems. The case where <span><math><mi>X</mi></math></span> is a space of paths <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and Φ is the path signature map has received much attention in stochastic analysis and related fields. In this article we develop a generalized Φ for the case where <span><math><mi>X</mi></math></span> is a space of maps <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for any <span><math><mi>d</mi><mo>∈</mo><mi>N</mi></math></span>, and show that the map Φ generalizes many of the desirable algebraic and analytic properties of the path signature to <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. The key ingredient to our approach is topological; in particular, our starting point is a generalization of K-T Chen's path space cochain construction to the setting of cubical mapping spaces.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"163 ","pages":"Article 102787"},"PeriodicalIF":1.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Permanent identities, combinatorial sequences, and permutation statistics 永久同一性、组合序列和置换统计
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2024-09-25 DOI: 10.1016/j.aam.2024.102789
Shishuo Fu , Zhicong Lin , Zhi-Wei Sun
{"title":"Permanent identities, combinatorial sequences, and permutation statistics","authors":"Shishuo Fu ,&nbsp;Zhicong Lin ,&nbsp;Zhi-Wei Sun","doi":"10.1016/j.aam.2024.102789","DOIUrl":"10.1016/j.aam.2024.102789","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper, we confirm six conjectures on the exact values of some permanents, relating them to the Genocchi numbers of the first and second kinds as well as the Euler numbers. For example, we prove that&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;per&lt;/mi&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;⌊&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;⌋&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; are the Bernoulli numbers. We also show that&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;per&lt;/mi&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;sgn&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;cos&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mtext&gt;if &lt;/mtext&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mtext&gt;if &lt;/mtext&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;sgn&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is the sign function, and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; are the Euler (zigzag) numbers.&lt;/div&gt;&lt;div&gt;In the course of linking the evaluation of these permanents to the aforementioned combinatorial sequences, the classical permutation statistic – the exceda","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"163 ","pages":"Article 102789"},"PeriodicalIF":1.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continued fractions for q-deformed real numbers, {−1,0,1}-Hankel determinants, and Somos-Gale-Robinson sequences q 个变形实数的连续分数、{-1,0,1}-汉克尔行列式和索莫斯-盖尔-罗宾逊序列
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2024-09-24 DOI: 10.1016/j.aam.2024.102788
Valentin Ovsienko , Emmanuel Pedon
{"title":"Continued fractions for q-deformed real numbers, {−1,0,1}-Hankel determinants, and Somos-Gale-Robinson sequences","authors":"Valentin Ovsienko ,&nbsp;Emmanuel Pedon","doi":"10.1016/j.aam.2024.102788","DOIUrl":"10.1016/j.aam.2024.102788","url":null,"abstract":"<div><div><em>q</em>-deformed real numbers are power series with integer coefficients. We study Stieltjes and Jacobi type continued fraction expansions of <em>q</em>-deformed real numbers and find many new examples of such continued fractions. We also investigate the corresponding sequences of Hankel determinants and find an infinite family of power series for which several of the first sequences of Hankel determinants consist of <span><math><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn></math></span> and 1 only. These Hankel sequences satisfy Somos and Gale-Robinson recurrences.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"162 ","pages":"Article 102788"},"PeriodicalIF":1.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196885824001209/pdfft?md5=8ffb0f6262c5c3186d8020047fccd544&pid=1-s2.0-S0196885824001209-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Summing the “exactly one 42” and similar subsums of the harmonic series 求谐波数列的 "恰好一个 42 "和类似子和
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2024-09-20 DOI: 10.1016/j.aam.2024.102791
Jean-François Burnol
{"title":"Summing the “exactly one 42” and similar subsums of the harmonic series","authors":"Jean-François Burnol","doi":"10.1016/j.aam.2024.102791","DOIUrl":"10.1016/j.aam.2024.102791","url":null,"abstract":"<div><p>For <span><math><mi>b</mi><mo>&gt;</mo><mn>1</mn></math></span> and <em>αβ</em> a string of two digits in base <em>b</em>, let <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> be the subsum of the harmonic series with only those integers having exactly one occurrence of <em>αβ</em>. We obtain a theoretical representation of such <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> series which, say for <span><math><mi>b</mi><mo>=</mo><mn>10</mn></math></span>, allows computing them all to thousands of digits. This is based on certain specific measures on the unit interval and the use of their Stieltjes transforms at negative integers. Integral identities of a combinatorial nature both explain the relation to the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> sums and lead to recurrence formulas for the measure moments allowing in the end the straightforward numerical implementation.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"162 ","pages":"Article 102791"},"PeriodicalIF":1.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196885824001234/pdfft?md5=2a1220cc0cdb8447beb302719d095400&pid=1-s2.0-S0196885824001234-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Betti numbers and torsions in homology groups of double coverings 双覆盖同调群中的贝蒂数和扭转
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2024-09-19 DOI: 10.1016/j.aam.2024.102790
Suguru Ishibashi , Sakumi Sugawara , Masahiko Yoshinaga
{"title":"Betti numbers and torsions in homology groups of double coverings","authors":"Suguru Ishibashi ,&nbsp;Sakumi Sugawara ,&nbsp;Masahiko Yoshinaga","doi":"10.1016/j.aam.2024.102790","DOIUrl":"10.1016/j.aam.2024.102790","url":null,"abstract":"<div><p>Papadima and Suciu proved an inequality between the ranks of the cohomology groups of the Aomoto complex with finite field coefficients and the twisted cohomology groups, and conjectured that they are actually equal for certain cases associated with the Milnor fiber of the arrangement. Recently, an arrangement (the icosidodecahedral arrangement) with the following two peculiar properties was found: (i) the strict version of Papadima-Suciu's inequality holds, and (ii) the first integral homology of the Milnor fiber has a non-trivial 2-torsion. In this paper, we investigate the relationship between these two properties for double covering spaces. We prove that (i) and (ii) are actually equivalent.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"162 ","pages":"Article 102790"},"PeriodicalIF":1.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196885824001222/pdfft?md5=69da8c583775517da2bb2711b6c0326e&pid=1-s2.0-S0196885824001222-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periodic sequences, binomials modulo a prime power, and a math/music application 周期序列、质数幂的二项式模数以及数学/音乐应用
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2024-09-18 DOI: 10.1016/j.aam.2024.102786
Luisa Fiorot , Riccardo Gilblas , Alberto Tonolo
{"title":"Periodic sequences, binomials modulo a prime power, and a math/music application","authors":"Luisa Fiorot ,&nbsp;Riccardo Gilblas ,&nbsp;Alberto Tonolo","doi":"10.1016/j.aam.2024.102786","DOIUrl":"10.1016/j.aam.2024.102786","url":null,"abstract":"<div><p>We study, through new recurrence relations for certain binomial coefficients modulo a power of a prime, the evolution of the iterated anti-differences of periodic sequences modulo <em>m</em>. We prove that one can reduce to study iterated anti-differences of constant sequences. Finally we apply our results to describe the dynamics of the iterated applications of the <em>Vieru operator</em> to the sequence considered by the Romanian composer Vieru in his <em>Book of Modes</em> <span><span>[20]</span></span>.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"162 ","pages":"Article 102786"},"PeriodicalIF":1.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196885824001180/pdfft?md5=1839fb412528765d556e8e099673d94c&pid=1-s2.0-S0196885824001180-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lozenge tilings of hexagons with intrusions I: Generalized intrusion 有侵入的六边形菱形倾斜 I:广义侵入
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2024-09-11 DOI: 10.1016/j.aam.2024.102775
Seok Hyun Byun , Tri Lai
{"title":"Lozenge tilings of hexagons with intrusions I: Generalized intrusion","authors":"Seok Hyun Byun ,&nbsp;Tri Lai","doi":"10.1016/j.aam.2024.102775","DOIUrl":"10.1016/j.aam.2024.102775","url":null,"abstract":"<div><p>MacMahon's classical theorem on the number of boxed plane partitions has been generalized in several directions. One way to generalize the theorem is to view boxed plane partitions as lozenge tilings of a hexagonal region and then generalize it by making some holes in the region and counting its tilings. In this paper, we provide new regions whose numbers of lozenges tilings are given by simple product formulas. The regions we consider can be obtained from hexagons by removing structures called <em>intrusions</em>. In fact, we show that the tiling generating functions of those regions under certain weights are given by similar formulas. These give the <em>q</em>-analogue of the enumeration results.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"162 ","pages":"Article 102775"},"PeriodicalIF":1.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196885824001076/pdfft?md5=90b8abc9df7d400118905e44606a445d&pid=1-s2.0-S0196885824001076-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Binary search trees of permuton samples permuton 样本的二元搜索树
IF 1 3区 数学
Advances in Applied Mathematics Pub Date : 2024-09-11 DOI: 10.1016/j.aam.2024.102774
Benoît Corsini , Victor Dubach , Valentin Féray
{"title":"Binary search trees of permuton samples","authors":"Benoît Corsini ,&nbsp;Victor Dubach ,&nbsp;Valentin Féray","doi":"10.1016/j.aam.2024.102774","DOIUrl":"10.1016/j.aam.2024.102774","url":null,"abstract":"<div><p>Binary search trees (BST) are a popular type of structure when dealing with ordered data. They allow efficient access and modification of data, with their height corresponding to the worst retrieval time. From a probabilistic point of view, BSTs associated with data arriving in a uniform random order are well understood, but less is known when the input is a non-uniform permutation.</p><p>We consider here the case where the input comes from i.i.d. random points in the plane with law <em>μ</em>, a model which we refer to as a <em>permuton sample</em>. Our results show that the asymptotic proportion of nodes in each subtree only depends on the behavior of the measure <em>μ</em> at its left boundary, while the height of the BST has a universal asymptotic behavior for a large family of measures <em>μ</em>. Our approach involves a mix of combinatorial and probabilistic tools, namely combinatorial properties of binary search trees, coupling arguments, and deviation estimates.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"162 ","pages":"Article 102774"},"PeriodicalIF":1.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196885824001064/pdfft?md5=fa44e48f703260d712cd75225131a386&pid=1-s2.0-S0196885824001064-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信