Hyunsoo Cho , Byungchan Kim , Eunmi Kim , Ae Ja Yee
{"title":"On the distribution of t-hooks of doubled distinct partitions","authors":"Hyunsoo Cho , Byungchan Kim , Eunmi Kim , Ae Ja Yee","doi":"10.1016/j.aam.2025.102958","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, Griffin, Ono, and Tsai examined the distribution of the number of <em>t</em>-hooks in partitions of <em>n</em>, which was later followed by the work of Craig, Ono, and Singh on the distribution of the number of <em>t</em>-hooks in self-conjugate partitions of <em>n</em>. Motivated by these studies, in this paper, we further investigate the number of <em>t</em>-hooks in some subsets of partitions. More specifically, we obtain the generating functions for the number of <em>t</em>-hooks in doubled distinct partitions and the number of <em>t</em>-shifted hooks in strict partitions. Based on these generating functions, we prove that the number of <em>t</em>-hooks in doubled distinct partitions and the number of <em>t</em>-shifted hooks in strict partitions are both asymptotically normally distributed.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"171 ","pages":"Article 102958"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825001204","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, Griffin, Ono, and Tsai examined the distribution of the number of t-hooks in partitions of n, which was later followed by the work of Craig, Ono, and Singh on the distribution of the number of t-hooks in self-conjugate partitions of n. Motivated by these studies, in this paper, we further investigate the number of t-hooks in some subsets of partitions. More specifically, we obtain the generating functions for the number of t-hooks in doubled distinct partitions and the number of t-shifted hooks in strict partitions. Based on these generating functions, we prove that the number of t-hooks in doubled distinct partitions and the number of t-shifted hooks in strict partitions are both asymptotically normally distributed.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.