{"title":"Proof of a K-theoretic polynomial conjecture of Monical, Pechenik, and Searles","authors":"Laura Pierson","doi":"10.1016/j.aam.2025.102959","DOIUrl":null,"url":null,"abstract":"<div><div>As part of a program to develop <em>K</em>-theoretic analogues of combinatorially important polynomials, Monical, Pechenik, and Searles (2021) proved two expansion formulas <span><math><msub><mrow><mover><mrow><mi>A</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>b</mi></mrow></msub><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mi>β</mi><mo>)</mo><msub><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>b</mi></mrow></msub></math></span> and <span><math><msub><mrow><mover><mrow><mi>Q</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>b</mi></mrow></msub><msubsup><mrow><mi>M</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mi>β</mi><mo>)</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>b</mi></mrow></msub></math></span>, where each of <span><math><msub><mrow><mover><mrow><mi>A</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span>, <span><math><msub><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span>, <span><math><msub><mrow><mover><mrow><mi>Q</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> and <span><math><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> is a family of polynomials that forms a basis for <span><math><mi>Z</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>[</mo><mi>β</mi><mo>]</mo></math></span> indexed by weak compositions <em>a</em>, and <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mi>β</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mi>β</mi><mo>)</mo></math></span> are monomials in <em>β</em> for each pair <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span> of weak compositions. The polynomials <span><math><msub><mrow><mover><mrow><mi>A</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> are the <em><strong>Lascoux atoms</strong></em>, <span><math><msub><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> are the <em><strong>kaons</strong></em>, <span><math><msub><mrow><mover><mrow><mi>Q</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> are the <em><strong>quasiLascoux polynomials</strong></em>, and <span><math><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> are the <em><strong>glide polynomials</strong></em>; these are respectively the <em>K</em>-analogues of the <em><strong>Demazure atoms</strong></em> <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>, the <em><strong>fundamental particles</strong></em> <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>, the <em><strong>quasikey polynomials</strong></em> <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>, and the <em><strong>fundamental slide polynomials</strong></em> <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>. Monical, Pechenik, and Searles conjectubolded that for any fixed <em>a</em>, <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>b</mi></mrow></msub><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>,</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>b</mi></mrow></msub><msubsup><mrow><mi>M</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, where <em>b</em> ranges over all weak compositions. We prove this conjecture using a sign-reversing involution.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"171 ","pages":"Article 102959"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825001216","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
As part of a program to develop K-theoretic analogues of combinatorially important polynomials, Monical, Pechenik, and Searles (2021) proved two expansion formulas and , where each of , , and is a family of polynomials that forms a basis for indexed by weak compositions a, and and are monomials in β for each pair of weak compositions. The polynomials are the Lascoux atoms, are the kaons, are the quasiLascoux polynomials, and are the glide polynomials; these are respectively the K-analogues of the Demazure atoms , the fundamental particles , the quasikey polynomials , and the fundamental slide polynomials . Monical, Pechenik, and Searles conjectubolded that for any fixed a, , where b ranges over all weak compositions. We prove this conjecture using a sign-reversing involution.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.