A Whitney polynomial for hypermaps

IF 1.3 3区 数学 Q3 MATHEMATICS, APPLIED
Robert Cori , Gábor Hetyei
{"title":"A Whitney polynomial for hypermaps","authors":"Robert Cori ,&nbsp;Gábor Hetyei","doi":"10.1016/j.aam.2025.102951","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a Whitney polynomial for hypermaps. For maps, our definition depends only on the underlying graph and coincides with the usual definition, but for general hypermaps it depends on the topological structure. Our invariant satisfies a generalized deletion-contraction recurrence and it may be used to generalize the results of Arratia, Bollobás, Ellis-Monaghan, Martin and Sorkin connecting the circuit partition polynomial to the Martin polynomial of a graph. For hypermaps with hyperedges of length at most three our approach also allows generalizing most results connecting the chromatic polynomial and the flow polynomial with the Tutte polynomial of a graph.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"171 ","pages":"Article 102951"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825001137","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a Whitney polynomial for hypermaps. For maps, our definition depends only on the underlying graph and coincides with the usual definition, but for general hypermaps it depends on the topological structure. Our invariant satisfies a generalized deletion-contraction recurrence and it may be used to generalize the results of Arratia, Bollobás, Ellis-Monaghan, Martin and Sorkin connecting the circuit partition polynomial to the Martin polynomial of a graph. For hypermaps with hyperedges of length at most three our approach also allows generalizing most results connecting the chromatic polynomial and the flow polynomial with the Tutte polynomial of a graph.
超映射的Whitney多项式
我们为超映射引入了一个Whitney多项式。对于映射,我们的定义只依赖于底层图,并且与通常的定义一致,但是对于一般的超映射,它依赖于拓扑结构。我们的不变量满足广义的删除-收缩递推式,它可以推广Arratia, Bollobás, Ellis-Monaghan, Martin和Sorkin将电路划分多项式与图的Martin多项式联系起来的结果。对于超边长度最多为3的超映射,我们的方法也允许将图的色多项式和流多项式与图的Tutte多项式连接起来的大多数结果进行推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信