截断q-Appell级数的q超同余

IF 1.3 3区 数学 Q3 MATHEMATICS, APPLIED
Haihong He , Xiaoxia Wang
{"title":"截断q-Appell级数的q超同余","authors":"Haihong He ,&nbsp;Xiaoxia Wang","doi":"10.1016/j.aam.2025.102961","DOIUrl":null,"url":null,"abstract":"<div><div>Congruences and <em>q</em>-congruences for the truncated Appell series are quite finite in the literature. In this paper, we introduce the truncated <em>q</em>-Appell series and investigate their congruence properties. Specifically, using two hypergeometric summations, the ‘creative microscoping’ method formulated by Guo and Zudilin and the Chinese remainder theorem for coprime polynomials, we establish some <em>q</em>-supercongruences on the truncated <em>q</em>-Appell series <span><math><msup><mrow><mi>Φ</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>,</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>,</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msup></math></span>. Moreover, in terms of the <em>q</em>-Zeilberger algorithm, a <em>q</em>-supercongruence for the truncated <em>q</em>-Appell series <span><math><msup><mrow><mi>Φ</mi></mrow><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></msup></math></span> is built, which is a new <em>q</em>-analogue of a conjecture of Apagodu and Zeilberger. As conclusions, we immediately obtain some congruences of the truncated Appell series.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"172 ","pages":"Article 102961"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"q-supercongruences for truncated q-Appell series\",\"authors\":\"Haihong He ,&nbsp;Xiaoxia Wang\",\"doi\":\"10.1016/j.aam.2025.102961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Congruences and <em>q</em>-congruences for the truncated Appell series are quite finite in the literature. In this paper, we introduce the truncated <em>q</em>-Appell series and investigate their congruence properties. Specifically, using two hypergeometric summations, the ‘creative microscoping’ method formulated by Guo and Zudilin and the Chinese remainder theorem for coprime polynomials, we establish some <em>q</em>-supercongruences on the truncated <em>q</em>-Appell series <span><math><msup><mrow><mi>Φ</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>,</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>,</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msup></math></span>. Moreover, in terms of the <em>q</em>-Zeilberger algorithm, a <em>q</em>-supercongruence for the truncated <em>q</em>-Appell series <span><math><msup><mrow><mi>Φ</mi></mrow><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></msup></math></span> is built, which is a new <em>q</em>-analogue of a conjecture of Apagodu and Zeilberger. As conclusions, we immediately obtain some congruences of the truncated Appell series.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"172 \",\"pages\":\"Article 102961\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019688582500123X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019688582500123X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

截断apell级数的同余和q同余在文献中是相当有限的。本文引入截断q-Appell级数并研究其同余性质。具体地说,我们利用两个超几何和、郭祖林和祖丁林提出的“创造性显微镜”方法和中国的余数定理,在截断的q-Appell级数Φ(1)、Φ(2)、Φ(3)上建立了一些q-超同余。此外,对于q-Zeilberger算法,构造了截断的q-Appell级数Φ(4)的q超同余,这是Apagodu和Zeilberger猜想的一个新的q模拟。作为结论,我们立即得到了截断的apell级数的几个同余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
q-supercongruences for truncated q-Appell series
Congruences and q-congruences for the truncated Appell series are quite finite in the literature. In this paper, we introduce the truncated q-Appell series and investigate their congruence properties. Specifically, using two hypergeometric summations, the ‘creative microscoping’ method formulated by Guo and Zudilin and the Chinese remainder theorem for coprime polynomials, we establish some q-supercongruences on the truncated q-Appell series Φ(1),Φ(2),Φ(3). Moreover, in terms of the q-Zeilberger algorithm, a q-supercongruence for the truncated q-Appell series Φ(4) is built, which is a new q-analogue of a conjecture of Apagodu and Zeilberger. As conclusions, we immediately obtain some congruences of the truncated Appell series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信