{"title":"Cookie cutters: Bisections with fixed shapes","authors":"Patrick Schnider , Pablo Soberón","doi":"10.1016/j.aam.2025.102957","DOIUrl":null,"url":null,"abstract":"<div><div>In a mass partition problem, we are interested in finding equitable partitions of smooth measures in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. In this manuscript, we study the problem of finding simultaneous bisections of measures using scaled copies of a prescribed set <em>K</em>. We distinguish the problem when we are allowed to use scaled and translated copies of <em>K</em> and the problem when we are allowed to use scaled isometric copies of <em>K</em>. These problems have only previously been studied if <em>K</em> is a half-space or a Euclidean ball. We obtain positive results for simultaneous bisection of any <span><math><mi>d</mi><mo>+</mo><mn>1</mn></math></span> masses for star-shaped compact sets <em>K</em> with non-empty interior, where the conditions on the problem depend on the smoothness of the boundary of <em>K</em>. Additional proofs are included for particular instances of <em>K</em>, such as hypercubes and cylinders, answering positively a conjecture of Soberón and Takahashi. The proof methods are topological and involve new Borsuk–Ulam-type theorems.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"171 ","pages":"Article 102957"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825001198","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In a mass partition problem, we are interested in finding equitable partitions of smooth measures in . In this manuscript, we study the problem of finding simultaneous bisections of measures using scaled copies of a prescribed set K. We distinguish the problem when we are allowed to use scaled and translated copies of K and the problem when we are allowed to use scaled isometric copies of K. These problems have only previously been studied if K is a half-space or a Euclidean ball. We obtain positive results for simultaneous bisection of any masses for star-shaped compact sets K with non-empty interior, where the conditions on the problem depend on the smoothness of the boundary of K. Additional proofs are included for particular instances of K, such as hypercubes and cylinders, answering positively a conjecture of Soberón and Takahashi. The proof methods are topological and involve new Borsuk–Ulam-type theorems.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.