Monical, Pechenik和Searles的一个k理论多项式猜想的证明

IF 1.3 3区 数学 Q3 MATHEMATICS, APPLIED
Laura Pierson
{"title":"Monical, Pechenik和Searles的一个k理论多项式猜想的证明","authors":"Laura Pierson","doi":"10.1016/j.aam.2025.102959","DOIUrl":null,"url":null,"abstract":"<div><div>As part of a program to develop <em>K</em>-theoretic analogues of combinatorially important polynomials, Monical, Pechenik, and Searles (2021) proved two expansion formulas <span><math><msub><mrow><mover><mrow><mi>A</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>b</mi></mrow></msub><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mi>β</mi><mo>)</mo><msub><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>b</mi></mrow></msub></math></span> and <span><math><msub><mrow><mover><mrow><mi>Q</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>b</mi></mrow></msub><msubsup><mrow><mi>M</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mi>β</mi><mo>)</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>b</mi></mrow></msub></math></span>, where each of <span><math><msub><mrow><mover><mrow><mi>A</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span>, <span><math><msub><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span>, <span><math><msub><mrow><mover><mrow><mi>Q</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> and <span><math><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> is a family of polynomials that forms a basis for <span><math><mi>Z</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>[</mo><mi>β</mi><mo>]</mo></math></span> indexed by weak compositions <em>a</em>, and <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mi>β</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mi>β</mi><mo>)</mo></math></span> are monomials in <em>β</em> for each pair <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span> of weak compositions. The polynomials <span><math><msub><mrow><mover><mrow><mi>A</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> are the <em><strong>Lascoux atoms</strong></em>, <span><math><msub><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> are the <em><strong>kaons</strong></em>, <span><math><msub><mrow><mover><mrow><mi>Q</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> are the <em><strong>quasiLascoux polynomials</strong></em>, and <span><math><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> are the <em><strong>glide polynomials</strong></em>; these are respectively the <em>K</em>-analogues of the <em><strong>Demazure atoms</strong></em> <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>, the <em><strong>fundamental particles</strong></em> <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>, the <em><strong>quasikey polynomials</strong></em> <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>, and the <em><strong>fundamental slide polynomials</strong></em> <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>. Monical, Pechenik, and Searles conjectubolded that for any fixed <em>a</em>, <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>b</mi></mrow></msub><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>,</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>b</mi></mrow></msub><msubsup><mrow><mi>M</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, where <em>b</em> ranges over all weak compositions. We prove this conjecture using a sign-reversing involution.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"171 ","pages":"Article 102959"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of a K-theoretic polynomial conjecture of Monical, Pechenik, and Searles\",\"authors\":\"Laura Pierson\",\"doi\":\"10.1016/j.aam.2025.102959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As part of a program to develop <em>K</em>-theoretic analogues of combinatorially important polynomials, Monical, Pechenik, and Searles (2021) proved two expansion formulas <span><math><msub><mrow><mover><mrow><mi>A</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>b</mi></mrow></msub><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mi>β</mi><mo>)</mo><msub><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>b</mi></mrow></msub></math></span> and <span><math><msub><mrow><mover><mrow><mi>Q</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>b</mi></mrow></msub><msubsup><mrow><mi>M</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mi>β</mi><mo>)</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>b</mi></mrow></msub></math></span>, where each of <span><math><msub><mrow><mover><mrow><mi>A</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span>, <span><math><msub><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span>, <span><math><msub><mrow><mover><mrow><mi>Q</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> and <span><math><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> is a family of polynomials that forms a basis for <span><math><mi>Z</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>[</mo><mi>β</mi><mo>]</mo></math></span> indexed by weak compositions <em>a</em>, and <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mi>β</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mi>β</mi><mo>)</mo></math></span> are monomials in <em>β</em> for each pair <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span> of weak compositions. The polynomials <span><math><msub><mrow><mover><mrow><mi>A</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> are the <em><strong>Lascoux atoms</strong></em>, <span><math><msub><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> are the <em><strong>kaons</strong></em>, <span><math><msub><mrow><mover><mrow><mi>Q</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> are the <em><strong>quasiLascoux polynomials</strong></em>, and <span><math><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> are the <em><strong>glide polynomials</strong></em>; these are respectively the <em>K</em>-analogues of the <em><strong>Demazure atoms</strong></em> <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>, the <em><strong>fundamental particles</strong></em> <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>, the <em><strong>quasikey polynomials</strong></em> <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>, and the <em><strong>fundamental slide polynomials</strong></em> <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>. Monical, Pechenik, and Searles conjectubolded that for any fixed <em>a</em>, <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>b</mi></mrow></msub><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>,</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>b</mi></mrow></msub><msubsup><mrow><mi>M</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>a</mi></mrow></msubsup><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, where <em>b</em> ranges over all weak compositions. We prove this conjecture using a sign-reversing involution.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"171 \",\"pages\":\"Article 102959\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885825001216\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825001216","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

作为开发组合重要多项式的k理论类似物的计划的一部分,Monical, Pechenik和Searles(2021)证明了两个展开公式a - a=∑bQba(β)P - b和Q - a=∑bQba(β) F - b,其中a - a, P - a, Q - a和F - a中的每一个都是一个多项式族,它形成了由弱组合a索引的Z[x1,…,xn][β]的基础,Qba(β)和Mba(β)是β中的单项式对于每一对(a,b)弱组合。其中A - A是拉斯考克斯原子,P - A是介子,Q - A是准拉斯考克斯多项式,F - A是滑翔多项式;它们分别是Demazure原子Aa、基本粒子Pa、准多项式Qa和基本滑动多项式Fa的k -类似物。Monical, Pechenik和Searles推测,对于任意固定的a,∑bQba(- 1),∑bMba(- 1)∈{0,1},其中b在所有弱组合上都有范围。我们用一个逆号对合证明了这个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of a K-theoretic polynomial conjecture of Monical, Pechenik, and Searles
As part of a program to develop K-theoretic analogues of combinatorially important polynomials, Monical, Pechenik, and Searles (2021) proved two expansion formulas Aa=bQba(β)Pb and Qa=bMba(β)Fb, where each of Aa, Pa, Qa and Fa is a family of polynomials that forms a basis for Z[x1,,xn][β] indexed by weak compositions a, and Qba(β) and Mba(β) are monomials in β for each pair (a,b) of weak compositions. The polynomials Aa are the Lascoux atoms, Pa are the kaons, Qa are the quasiLascoux polynomials, and Fa are the glide polynomials; these are respectively the K-analogues of the Demazure atoms Aa, the fundamental particles Pa, the quasikey polynomials Qa, and the fundamental slide polynomials Fa. Monical, Pechenik, and Searles conjectubolded that for any fixed a, bQba(1),bMba(1){0,1}, where b ranges over all weak compositions. We prove this conjecture using a sign-reversing involution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信