{"title":"Fq[[T]]d中的格和螺旋移位算子","authors":"Yifeng Huang , Ruofan Jiang","doi":"10.1016/j.aam.2025.102950","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the algebra and combinatorics of an analogue of the Hermite normal form that classifies finite-index submodules of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><msup><mrow><mo>[</mo><mo>[</mo><mi>T</mi><mo>]</mo><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We identity both normal forms as instances of Gröbner basis theory under different monomial orders, where the Hermite normal form corresponds to the lex order, and the new normal form the hlex order. We note that the hlex normal form recovers the Smith normal form, a feature not enjoyed by the Hermite normal form. We also identify the combinatorial structure underlying the cell decomposition induced by the hlex normal form, which appears to be of independent interest. Notably, the statistics tracking the cell dimensions is compatible, in a certain way, with a collection of <em>d</em> “spiral shifting operators” on <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, which pairwise commute and collectively act freely and transitively. Using these operators, we give direct proofs of some new combinatorial identities obtained by translating the results of Solomon <span><span>[26]</span></span> and Petrogradsky <span><span>[25]</span></span> in terms of the hlex normal form.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"171 ","pages":"Article 102950"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattices in Fq[[T]]d and spiral shifting operators\",\"authors\":\"Yifeng Huang , Ruofan Jiang\",\"doi\":\"10.1016/j.aam.2025.102950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the algebra and combinatorics of an analogue of the Hermite normal form that classifies finite-index submodules of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><msup><mrow><mo>[</mo><mo>[</mo><mi>T</mi><mo>]</mo><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We identity both normal forms as instances of Gröbner basis theory under different monomial orders, where the Hermite normal form corresponds to the lex order, and the new normal form the hlex order. We note that the hlex normal form recovers the Smith normal form, a feature not enjoyed by the Hermite normal form. We also identify the combinatorial structure underlying the cell decomposition induced by the hlex normal form, which appears to be of independent interest. Notably, the statistics tracking the cell dimensions is compatible, in a certain way, with a collection of <em>d</em> “spiral shifting operators” on <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, which pairwise commute and collectively act freely and transitively. Using these operators, we give direct proofs of some new combinatorial identities obtained by translating the results of Solomon <span><span>[26]</span></span> and Petrogradsky <span><span>[25]</span></span> in terms of the hlex normal form.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"171 \",\"pages\":\"Article 102950\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885825001125\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825001125","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Lattices in Fq[[T]]d and spiral shifting operators
We investigate the algebra and combinatorics of an analogue of the Hermite normal form that classifies finite-index submodules of . We identity both normal forms as instances of Gröbner basis theory under different monomial orders, where the Hermite normal form corresponds to the lex order, and the new normal form the hlex order. We note that the hlex normal form recovers the Smith normal form, a feature not enjoyed by the Hermite normal form. We also identify the combinatorial structure underlying the cell decomposition induced by the hlex normal form, which appears to be of independent interest. Notably, the statistics tracking the cell dimensions is compatible, in a certain way, with a collection of d “spiral shifting operators” on , which pairwise commute and collectively act freely and transitively. Using these operators, we give direct proofs of some new combinatorial identities obtained by translating the results of Solomon [26] and Petrogradsky [25] in terms of the hlex normal form.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.