Minimal skew semistandard tableaux and the Hillman–Grassl correspondence

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Alejandro H. Morales , Greta Panova , GaYee Park
{"title":"Minimal skew semistandard tableaux and the Hillman–Grassl correspondence","authors":"Alejandro H. Morales ,&nbsp;Greta Panova ,&nbsp;GaYee Park","doi":"10.1016/j.aam.2024.102792","DOIUrl":null,"url":null,"abstract":"<div><div>Standard tableaux of skew shape are fundamental objects in enumerative and algebraic combinatorics and no product formula for the number is known. In 2014, Naruse gave a formula <span><span>(NHLF)</span></span> as a positive sum over excited diagrams of products of hook-lengths. Subsequently, Morales, Pak, and Panova gave a <em>q</em>-analogue of this formula in terms of skew semistandard tableaux (SSYT). They also showed, partly algebraically, that the Hillman–Grassl bijection, restricted to skew semistandard tableaux, is behind their <em>q</em>-analogue. We study the problem of circumventing the algebraic part and proving the bijection completely combinatorially, which we do for the case of border strips. For general skew shapes, we define minimal semistandard Young tableaux, that are in correspondence with excited diagrams via a new description of the Hillman–Grassl bijection and have an analogue of excited moves. Lastly, we relate the minimal skew SSYT with the terms of the Okounkov-Olshanski formula <span><span>(OOF)</span></span> for counting standard tableaux of skew shape. Our construction immediately implies that the summands in the NHLF are less than the summands in the OOF and we characterize the shapes where both formulas have the same number of summands.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001246","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Standard tableaux of skew shape are fundamental objects in enumerative and algebraic combinatorics and no product formula for the number is known. In 2014, Naruse gave a formula (NHLF) as a positive sum over excited diagrams of products of hook-lengths. Subsequently, Morales, Pak, and Panova gave a q-analogue of this formula in terms of skew semistandard tableaux (SSYT). They also showed, partly algebraically, that the Hillman–Grassl bijection, restricted to skew semistandard tableaux, is behind their q-analogue. We study the problem of circumventing the algebraic part and proving the bijection completely combinatorially, which we do for the case of border strips. For general skew shapes, we define minimal semistandard Young tableaux, that are in correspondence with excited diagrams via a new description of the Hillman–Grassl bijection and have an analogue of excited moves. Lastly, we relate the minimal skew SSYT with the terms of the Okounkov-Olshanski formula (OOF) for counting standard tableaux of skew shape. Our construction immediately implies that the summands in the NHLF are less than the summands in the OOF and we characterize the shapes where both formulas have the same number of summands.
最小倾斜半标准表和希尔曼-格拉斯尔对应关系
歪斜形状的标准表图是枚举和代数组合学中的基本对象,目前还不知道其数量的乘积公式。2014 年,Naruse 给出了一个公式(NHLF),它是钩长乘积的激发图的正和。随后,莫拉莱斯、帕克和帕诺娃用偏斜半标准表(SSYT)给出了该公式的 q 类似形式。他们还部分地从代数学角度证明,希尔曼-格拉斯尔双射公式(Hillman-Grassl bijection)局限于偏斜半标准表式,是他们的 q-analogue 背后的原因。我们研究的问题是绕过代数部分,完全以组合的方式证明偏射,我们针对边条的情况做到了这一点。对于一般偏斜图形,我们定义了最小半标准杨表,通过对希尔曼-格拉斯尔偏射的新描述,使其与激发图相对应,并具有激发移动的相似性。最后,我们将最小偏斜扬格图与奥孔科夫-奥尔尚斯基公式(OOF)中用于计算偏斜形状标准台形的项联系起来。我们的构造立即意味着 NHLF 中的求和项少于 OOF 中的求和项,我们还描述了两个公式具有相同求和项数的形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信