Chad Giusti , Darrick Lee , Vidit Nanda , Harald Oberhauser
{"title":"映射空间特征的拓扑方法","authors":"Chad Giusti , Darrick Lee , Vidit Nanda , Harald Oberhauser","doi":"10.1016/j.aam.2024.102787","DOIUrl":null,"url":null,"abstract":"<div><div>A common approach for describing classes of functions and probability measures on a topological space <span><math><mi>X</mi></math></span> is to construct a suitable map Φ from <span><math><mi>X</mi></math></span> into a vector space, where linear methods can be applied to address both problems. The case where <span><math><mi>X</mi></math></span> is a space of paths <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and Φ is the path signature map has received much attention in stochastic analysis and related fields. In this article we develop a generalized Φ for the case where <span><math><mi>X</mi></math></span> is a space of maps <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for any <span><math><mi>d</mi><mo>∈</mo><mi>N</mi></math></span>, and show that the map Φ generalizes many of the desirable algebraic and analytic properties of the path signature to <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. The key ingredient to our approach is topological; in particular, our starting point is a generalization of K-T Chen's path space cochain construction to the setting of cubical mapping spaces.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"163 ","pages":"Article 102787"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A topological approach to mapping space signatures\",\"authors\":\"Chad Giusti , Darrick Lee , Vidit Nanda , Harald Oberhauser\",\"doi\":\"10.1016/j.aam.2024.102787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A common approach for describing classes of functions and probability measures on a topological space <span><math><mi>X</mi></math></span> is to construct a suitable map Φ from <span><math><mi>X</mi></math></span> into a vector space, where linear methods can be applied to address both problems. The case where <span><math><mi>X</mi></math></span> is a space of paths <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and Φ is the path signature map has received much attention in stochastic analysis and related fields. In this article we develop a generalized Φ for the case where <span><math><mi>X</mi></math></span> is a space of maps <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for any <span><math><mi>d</mi><mo>∈</mo><mi>N</mi></math></span>, and show that the map Φ generalizes many of the desirable algebraic and analytic properties of the path signature to <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. The key ingredient to our approach is topological; in particular, our starting point is a generalization of K-T Chen's path space cochain construction to the setting of cubical mapping spaces.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"163 \",\"pages\":\"Article 102787\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824001192\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001192","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
描述拓扑空间 X 上的函数类和概率度量的常用方法是构建一个合适的映射 Φ,从 X 映射到一个向量空间,其中线性方法可用于解决这两个问题。X 是路径空间 [0,1]→Rn,Φ 是路径签名图,这种情况在随机分析和相关领域受到广泛关注。在本文中,我们针对 X 是任意 d∈N 的映射空间 [0,1]d→Rn 的情况,开发了广义的 Φ,并证明该映射 Φ 将路径签名的许多理想代数和分析性质推广到了 d≥2。我们的方法的关键要素是拓扑;特别是,我们的出发点是将陈康泰的路径空间共链构造推广到立方映射空间的设置中。
A topological approach to mapping space signatures
A common approach for describing classes of functions and probability measures on a topological space is to construct a suitable map Φ from into a vector space, where linear methods can be applied to address both problems. The case where is a space of paths and Φ is the path signature map has received much attention in stochastic analysis and related fields. In this article we develop a generalized Φ for the case where is a space of maps for any , and show that the map Φ generalizes many of the desirable algebraic and analytic properties of the path signature to . The key ingredient to our approach is topological; in particular, our starting point is a generalization of K-T Chen's path space cochain construction to the setting of cubical mapping spaces.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.