映射空间特征的拓扑方法

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Chad Giusti , Darrick Lee , Vidit Nanda , Harald Oberhauser
{"title":"映射空间特征的拓扑方法","authors":"Chad Giusti ,&nbsp;Darrick Lee ,&nbsp;Vidit Nanda ,&nbsp;Harald Oberhauser","doi":"10.1016/j.aam.2024.102787","DOIUrl":null,"url":null,"abstract":"<div><div>A common approach for describing classes of functions and probability measures on a topological space <span><math><mi>X</mi></math></span> is to construct a suitable map Φ from <span><math><mi>X</mi></math></span> into a vector space, where linear methods can be applied to address both problems. The case where <span><math><mi>X</mi></math></span> is a space of paths <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and Φ is the path signature map has received much attention in stochastic analysis and related fields. In this article we develop a generalized Φ for the case where <span><math><mi>X</mi></math></span> is a space of maps <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for any <span><math><mi>d</mi><mo>∈</mo><mi>N</mi></math></span>, and show that the map Φ generalizes many of the desirable algebraic and analytic properties of the path signature to <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. The key ingredient to our approach is topological; in particular, our starting point is a generalization of K-T Chen's path space cochain construction to the setting of cubical mapping spaces.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A topological approach to mapping space signatures\",\"authors\":\"Chad Giusti ,&nbsp;Darrick Lee ,&nbsp;Vidit Nanda ,&nbsp;Harald Oberhauser\",\"doi\":\"10.1016/j.aam.2024.102787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A common approach for describing classes of functions and probability measures on a topological space <span><math><mi>X</mi></math></span> is to construct a suitable map Φ from <span><math><mi>X</mi></math></span> into a vector space, where linear methods can be applied to address both problems. The case where <span><math><mi>X</mi></math></span> is a space of paths <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and Φ is the path signature map has received much attention in stochastic analysis and related fields. In this article we develop a generalized Φ for the case where <span><math><mi>X</mi></math></span> is a space of maps <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for any <span><math><mi>d</mi><mo>∈</mo><mi>N</mi></math></span>, and show that the map Φ generalizes many of the desirable algebraic and analytic properties of the path signature to <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. The key ingredient to our approach is topological; in particular, our starting point is a generalization of K-T Chen's path space cochain construction to the setting of cubical mapping spaces.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824001192\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001192","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

描述拓扑空间 X 上的函数类和概率度量的常用方法是构建一个合适的映射 Φ,从 X 映射到一个向量空间,其中线性方法可用于解决这两个问题。X 是路径空间 [0,1]→Rn,Φ 是路径签名图,这种情况在随机分析和相关领域受到广泛关注。在本文中,我们针对 X 是任意 d∈N 的映射空间 [0,1]d→Rn 的情况,开发了广义的 Φ,并证明该映射 Φ 将路径签名的许多理想代数和分析性质推广到了 d≥2。我们的方法的关键要素是拓扑;特别是,我们的出发点是将陈康泰的路径空间共链构造推广到立方映射空间的设置中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A topological approach to mapping space signatures
A common approach for describing classes of functions and probability measures on a topological space X is to construct a suitable map Φ from X into a vector space, where linear methods can be applied to address both problems. The case where X is a space of paths [0,1]Rn and Φ is the path signature map has received much attention in stochastic analysis and related fields. In this article we develop a generalized Φ for the case where X is a space of maps [0,1]dRn for any dN, and show that the map Φ generalizes many of the desirable algebraic and analytic properties of the path signature to d2. The key ingredient to our approach is topological; in particular, our starting point is a generalization of K-T Chen's path space cochain construction to the setting of cubical mapping spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信