{"title":"永久同一性、组合序列和置换统计","authors":"Shishuo Fu , Zhicong Lin , Zhi-Wei Sun","doi":"10.1016/j.aam.2024.102789","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we confirm six conjectures on the exact values of some permanents, relating them to the Genocchi numbers of the first and second kinds as well as the Euler numbers. For example, we prove that<span><span><span><math><mrow><mi>per</mi></mrow><msub><mrow><mo>[</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>2</mn><mi>j</mi><mo>−</mo><mi>k</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>⌋</mo></mrow><mo>]</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>j</mi><mo>,</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo></math></span> are the Bernoulli numbers. We also show that<span><span><span><math><mrow><mi>per</mi></mrow><msub><mrow><mo>[</mo><mrow><mi>sgn</mi></mrow><mrow><mo>(</mo><mi>cos</mi><mo></mo><mi>π</mi><mfrac><mrow><mi>i</mi><mo>+</mo><mi>j</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>)</mo></mrow><mo>]</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mi>n</mi></mrow></msub><mspace></mspace><mspace></mspace><mo>=</mo><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mrow><mo>(</mo><mtable><mtr><mtd><mi>m</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></mtd><mtd><mspace></mspace><mrow><mtext>if </mtext><mi>n</mi><mo>=</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mrow><mo>(</mo><mtable><mtr><mtd><mi>m</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub></mtd><mtd><mspace></mspace><mrow><mtext>if </mtext><mi>n</mi><mo>=</mo><mn>2</mn><mi>m</mi></mrow><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mrow><mi>sgn</mi></mrow><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is the sign function, and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo></math></span> are the Euler (zigzag) numbers.</div><div>In the course of linking the evaluation of these permanents to the aforementioned combinatorial sequences, the classical permutation statistic – the excedance number, together with several kinds of its variants, plays a central role. Our approach features recurrence relations, bijections, as well as certain elementary operations on matrices that preserve their permanents. Moreover, our proof of the second permanent identity leads to a proof of Bala's conjectural continued fraction formula, and an unexpected permutation interpretation for the <em>γ</em>-coefficients of the 2-Eulerian polynomials.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Permanent identities, combinatorial sequences, and permutation statistics\",\"authors\":\"Shishuo Fu , Zhicong Lin , Zhi-Wei Sun\",\"doi\":\"10.1016/j.aam.2024.102789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we confirm six conjectures on the exact values of some permanents, relating them to the Genocchi numbers of the first and second kinds as well as the Euler numbers. For example, we prove that<span><span><span><math><mrow><mi>per</mi></mrow><msub><mrow><mo>[</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>2</mn><mi>j</mi><mo>−</mo><mi>k</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>⌋</mo></mrow><mo>]</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>j</mi><mo>,</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo></math></span> are the Bernoulli numbers. We also show that<span><span><span><math><mrow><mi>per</mi></mrow><msub><mrow><mo>[</mo><mrow><mi>sgn</mi></mrow><mrow><mo>(</mo><mi>cos</mi><mo></mo><mi>π</mi><mfrac><mrow><mi>i</mi><mo>+</mo><mi>j</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>)</mo></mrow><mo>]</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mi>n</mi></mrow></msub><mspace></mspace><mspace></mspace><mo>=</mo><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mrow><mo>(</mo><mtable><mtr><mtd><mi>m</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></mtd><mtd><mspace></mspace><mrow><mtext>if </mtext><mi>n</mi><mo>=</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mrow><mo>(</mo><mtable><mtr><mtd><mi>m</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub></mtd><mtd><mspace></mspace><mrow><mtext>if </mtext><mi>n</mi><mo>=</mo><mn>2</mn><mi>m</mi></mrow><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mrow><mi>sgn</mi></mrow><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is the sign function, and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo></math></span> are the Euler (zigzag) numbers.</div><div>In the course of linking the evaluation of these permanents to the aforementioned combinatorial sequences, the classical permutation statistic – the excedance number, together with several kinds of its variants, plays a central role. Our approach features recurrence relations, bijections, as well as certain elementary operations on matrices that preserve their permanents. Moreover, our proof of the second permanent identity leads to a proof of Bala's conjectural continued fraction formula, and an unexpected permutation interpretation for the <em>γ</em>-coefficients of the 2-Eulerian polynomials.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824001210\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001210","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Permanent identities, combinatorial sequences, and permutation statistics
In this paper, we confirm six conjectures on the exact values of some permanents, relating them to the Genocchi numbers of the first and second kinds as well as the Euler numbers. For example, we prove that where are the Bernoulli numbers. We also show that where is the sign function, and are the Euler (zigzag) numbers.
In the course of linking the evaluation of these permanents to the aforementioned combinatorial sequences, the classical permutation statistic – the excedance number, together with several kinds of its variants, plays a central role. Our approach features recurrence relations, bijections, as well as certain elementary operations on matrices that preserve their permanents. Moreover, our proof of the second permanent identity leads to a proof of Bala's conjectural continued fraction formula, and an unexpected permutation interpretation for the γ-coefficients of the 2-Eulerian polynomials.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.