周期序列、质数幂的二项式模数以及数学/音乐应用

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Luisa Fiorot , Riccardo Gilblas , Alberto Tonolo
{"title":"周期序列、质数幂的二项式模数以及数学/音乐应用","authors":"Luisa Fiorot ,&nbsp;Riccardo Gilblas ,&nbsp;Alberto Tonolo","doi":"10.1016/j.aam.2024.102786","DOIUrl":null,"url":null,"abstract":"<div><p>We study, through new recurrence relations for certain binomial coefficients modulo a power of a prime, the evolution of the iterated anti-differences of periodic sequences modulo <em>m</em>. We prove that one can reduce to study iterated anti-differences of constant sequences. Finally we apply our results to describe the dynamics of the iterated applications of the <em>Vieru operator</em> to the sequence considered by the Romanian composer Vieru in his <em>Book of Modes</em> <span><span>[20]</span></span>.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196885824001180/pdfft?md5=1839fb412528765d556e8e099673d94c&pid=1-s2.0-S0196885824001180-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Periodic sequences, binomials modulo a prime power, and a math/music application\",\"authors\":\"Luisa Fiorot ,&nbsp;Riccardo Gilblas ,&nbsp;Alberto Tonolo\",\"doi\":\"10.1016/j.aam.2024.102786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study, through new recurrence relations for certain binomial coefficients modulo a power of a prime, the evolution of the iterated anti-differences of periodic sequences modulo <em>m</em>. We prove that one can reduce to study iterated anti-differences of constant sequences. Finally we apply our results to describe the dynamics of the iterated applications of the <em>Vieru operator</em> to the sequence considered by the Romanian composer Vieru in his <em>Book of Modes</em> <span><span>[20]</span></span>.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0196885824001180/pdfft?md5=1839fb412528765d556e8e099673d94c&pid=1-s2.0-S0196885824001180-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824001180\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001180","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们通过某些二项式系数 modulo a power of a prime 的新递推关系,研究了周期序列 modulo m 的迭代反差的演化。最后,我们将我们的结果应用于描述罗马尼亚作曲家维埃鲁在其《模之书》[20] 中考虑的序列的维埃鲁算子迭代应用动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic sequences, binomials modulo a prime power, and a math/music application

We study, through new recurrence relations for certain binomial coefficients modulo a power of a prime, the evolution of the iterated anti-differences of periodic sequences modulo m. We prove that one can reduce to study iterated anti-differences of constant sequences. Finally we apply our results to describe the dynamics of the iterated applications of the Vieru operator to the sequence considered by the Romanian composer Vieru in his Book of Modes [20].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信