{"title":"Summing the “exactly one 42” and similar subsums of the harmonic series","authors":"Jean-François Burnol","doi":"10.1016/j.aam.2024.102791","DOIUrl":null,"url":null,"abstract":"<div><p>For <span><math><mi>b</mi><mo>></mo><mn>1</mn></math></span> and <em>αβ</em> a string of two digits in base <em>b</em>, let <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> be the subsum of the harmonic series with only those integers having exactly one occurrence of <em>αβ</em>. We obtain a theoretical representation of such <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> series which, say for <span><math><mi>b</mi><mo>=</mo><mn>10</mn></math></span>, allows computing them all to thousands of digits. This is based on certain specific measures on the unit interval and the use of their Stieltjes transforms at negative integers. Integral identities of a combinatorial nature both explain the relation to the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> sums and lead to recurrence formulas for the measure moments allowing in the end the straightforward numerical implementation.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196885824001234/pdfft?md5=2a1220cc0cdb8447beb302719d095400&pid=1-s2.0-S0196885824001234-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001234","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For and αβ a string of two digits in base b, let be the subsum of the harmonic series with only those integers having exactly one occurrence of αβ. We obtain a theoretical representation of such series which, say for , allows computing them all to thousands of digits. This is based on certain specific measures on the unit interval and the use of their Stieltjes transforms at negative integers. Integral identities of a combinatorial nature both explain the relation to the sums and lead to recurrence formulas for the measure moments allowing in the end the straightforward numerical implementation.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.