Permanent identities, combinatorial sequences, and permutation statistics

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Shishuo Fu , Zhicong Lin , Zhi-Wei Sun
{"title":"Permanent identities, combinatorial sequences, and permutation statistics","authors":"Shishuo Fu ,&nbsp;Zhicong Lin ,&nbsp;Zhi-Wei Sun","doi":"10.1016/j.aam.2024.102789","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we confirm six conjectures on the exact values of some permanents, relating them to the Genocchi numbers of the first and second kinds as well as the Euler numbers. For example, we prove that<span><span><span><math><mrow><mi>per</mi></mrow><msub><mrow><mo>[</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>2</mn><mi>j</mi><mo>−</mo><mi>k</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>⌋</mo></mrow><mo>]</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>j</mi><mo>,</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo></math></span> are the Bernoulli numbers. We also show that<span><span><span><math><mrow><mi>per</mi></mrow><msub><mrow><mo>[</mo><mrow><mi>sgn</mi></mrow><mrow><mo>(</mo><mi>cos</mi><mo>⁡</mo><mi>π</mi><mfrac><mrow><mi>i</mi><mo>+</mo><mi>j</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>)</mo></mrow><mo>]</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mi>n</mi></mrow></msub><mspace></mspace><mspace></mspace><mo>=</mo><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mrow><mo>(</mo><mtable><mtr><mtd><mi>m</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></mtd><mtd><mspace></mspace><mrow><mtext>if </mtext><mi>n</mi><mo>=</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mrow><mo>(</mo><mtable><mtr><mtd><mi>m</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub></mtd><mtd><mspace></mspace><mrow><mtext>if </mtext><mi>n</mi><mo>=</mo><mn>2</mn><mi>m</mi></mrow><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mrow><mi>sgn</mi></mrow><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is the sign function, and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo></math></span> are the Euler (zigzag) numbers.</div><div>In the course of linking the evaluation of these permanents to the aforementioned combinatorial sequences, the classical permutation statistic – the excedance number, together with several kinds of its variants, plays a central role. Our approach features recurrence relations, bijections, as well as certain elementary operations on matrices that preserve their permanents. Moreover, our proof of the second permanent identity leads to a proof of Bala's conjectural continued fraction formula, and an unexpected permutation interpretation for the <em>γ</em>-coefficients of the 2-Eulerian polynomials.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001210","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we confirm six conjectures on the exact values of some permanents, relating them to the Genocchi numbers of the first and second kinds as well as the Euler numbers. For example, we prove thatper[2jkn]1j,kn=2(2n+11)Bn+1, where B0,B1,B2, are the Bernoulli numbers. We also show thatper[sgn(cosπi+jn+1)]1i,jn={k=0m(mk)E2k+1if n=2m+1,k=0m(mk)E2kif n=2m, where sgn(x) is the sign function, and E0,E1,E2, are the Euler (zigzag) numbers.
In the course of linking the evaluation of these permanents to the aforementioned combinatorial sequences, the classical permutation statistic – the excedance number, together with several kinds of its variants, plays a central role. Our approach features recurrence relations, bijections, as well as certain elementary operations on matrices that preserve their permanents. Moreover, our proof of the second permanent identity leads to a proof of Bala's conjectural continued fraction formula, and an unexpected permutation interpretation for the γ-coefficients of the 2-Eulerian polynomials.
永久同一性、组合序列和置换统计
在本文中,我们证实了关于一些永恒项精确值的六个猜想,这些猜想与第一种和第二种基诺奇数以及欧拉数有关。例如,我们证明了 per[⌊2j-kn⌋]1≤j,k≤n=2(2n+1-1)Bn+1,其中 B0,B1,B2,... 是伯努利数。我们还证明,per[sgn(cosπi+jn+1)]1≤i,j≤n={-∑k=0m(mk)E2k+1(如果 n=2m+1),∑k=0m(mk)E2k(如果 n=2m),其中 sgn(x) 是符号函数,E0,E1,E2,... 是欧拉(之字)数。在将这些永久数的评估与上述组合序列联系起来的过程中,经典的置换统计量--切除数,以及它的几种变体,起着核心作用。我们的方法以递推关系、双射以及矩阵的某些基本运算为特色,这些运算保留了矩阵的永久性。此外,我们对第二个恒等式的证明导致了对巴拉猜想的续分公式的证明,以及对 2-Eulerian 多项式的 γ 系数的意想不到的置换解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信