双臂老虎机帕隆多悖论猜想的证明

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Huaijin Liang , Zengjing Chen
{"title":"双臂老虎机帕隆多悖论猜想的证明","authors":"Huaijin Liang ,&nbsp;Zengjing Chen","doi":"10.1016/j.aam.2024.102793","DOIUrl":null,"url":null,"abstract":"<div><div>The 1936 Mills Futurity slot machine had the feature that, if a player loses 10 times in a row, the 10 lost coins are returned. Ethier and Lee (2010) studied a generalized version of this machine, with 10 replaced by deterministic parameter <em>J</em>. They established the Parrondo effect for a hypothetical two-armed machine with the Futurity award. Specifically, arm <em>A</em> and arm <em>B</em>, played individually, are asymptotically fair, but when alternated randomly (the so-called random mixture strategy), the casino makes money in the long run. They also considered the nonrandom periodic pattern strategy for patterns with <em>r A</em>s and <em>s B</em>s (e.g., <span><math><mi>A</mi><mi>B</mi><mi>A</mi><mi>B</mi><mi>B</mi></math></span> if <span><math><mi>r</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>s</mi><mo>=</mo><mn>3</mn></math></span>). They established the Parrondo effect if <span><math><mi>r</mi><mo>+</mo><mi>s</mi></math></span> divides <em>J</em>, and conjectured it in four other situations, including the case <span><math><mi>J</mi><mo>=</mo><mn>2</mn></math></span> with <span><math><mi>r</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mi>s</mi><mo>≥</mo><mn>1</mn></math></span>. We prove the conjecture in the latter case.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"163 ","pages":"Article 102793"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of a conjecture about Parrondo's paradox for two-armed slot machines\",\"authors\":\"Huaijin Liang ,&nbsp;Zengjing Chen\",\"doi\":\"10.1016/j.aam.2024.102793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The 1936 Mills Futurity slot machine had the feature that, if a player loses 10 times in a row, the 10 lost coins are returned. Ethier and Lee (2010) studied a generalized version of this machine, with 10 replaced by deterministic parameter <em>J</em>. They established the Parrondo effect for a hypothetical two-armed machine with the Futurity award. Specifically, arm <em>A</em> and arm <em>B</em>, played individually, are asymptotically fair, but when alternated randomly (the so-called random mixture strategy), the casino makes money in the long run. They also considered the nonrandom periodic pattern strategy for patterns with <em>r A</em>s and <em>s B</em>s (e.g., <span><math><mi>A</mi><mi>B</mi><mi>A</mi><mi>B</mi><mi>B</mi></math></span> if <span><math><mi>r</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>s</mi><mo>=</mo><mn>3</mn></math></span>). They established the Parrondo effect if <span><math><mi>r</mi><mo>+</mo><mi>s</mi></math></span> divides <em>J</em>, and conjectured it in four other situations, including the case <span><math><mi>J</mi><mo>=</mo><mn>2</mn></math></span> with <span><math><mi>r</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mi>s</mi><mo>≥</mo><mn>1</mn></math></span>. We prove the conjecture in the latter case.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"163 \",\"pages\":\"Article 102793\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824001258\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001258","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

1936 年的米尔斯 "未来奖 "老虎机有一个特点,即如果玩家连续输掉 10 次,输掉的 10 枚硬币将被返还。Ethier 和 Lee(2010 年)研究了这种老虎机的通用版本,用确定性参数 J 代替了 10。具体来说,单独玩的 A 臂和 B 臂在近似上是公平的,但如果随机交替使用(即所谓的随机混合策略),赌场就会长期赚钱。他们还考虑了具有 r As 和 s Bs 的非随机周期模式策略(例如,如果 r=2 和 s=3,则为 ABABB)。他们确定了 r+s 除以 J 时的帕隆多效应,并猜想了其他四种情况,包括 J=2 且 r≥1 和 s≥1 的情况。我们证明了后一种情况下的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of a conjecture about Parrondo's paradox for two-armed slot machines
The 1936 Mills Futurity slot machine had the feature that, if a player loses 10 times in a row, the 10 lost coins are returned. Ethier and Lee (2010) studied a generalized version of this machine, with 10 replaced by deterministic parameter J. They established the Parrondo effect for a hypothetical two-armed machine with the Futurity award. Specifically, arm A and arm B, played individually, are asymptotically fair, but when alternated randomly (the so-called random mixture strategy), the casino makes money in the long run. They also considered the nonrandom periodic pattern strategy for patterns with r As and s Bs (e.g., ABABB if r=2 and s=3). They established the Parrondo effect if r+s divides J, and conjectured it in four other situations, including the case J=2 with r1 and s1. We prove the conjecture in the latter case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信