Annales De L Institut Fourier最新文献

筛选
英文 中文
The spectrum of some Hardy kernel matrices 一些Hardy核矩阵的谱
IF 0.7 4区 数学
Annales De L Institut Fourier Pub Date : 2020-03-25 DOI: 10.5802/aif.3589
Ole Fredrik Brevig, Karl-Mikael Perfekt, Alexander Pushnitski
{"title":"The spectrum of some Hardy kernel matrices","authors":"Ole Fredrik Brevig, Karl-Mikael Perfekt, Alexander Pushnitski","doi":"10.5802/aif.3589","DOIUrl":"https://doi.org/10.5802/aif.3589","url":null,"abstract":"For $alpha > 0$ we consider the operator $K_alpha colon ell^2 to ell^2$ corresponding to the matrix [left(frac{(nm)^{-frac{1}{2}+alpha}}{[max(n,m)]^{2alpha}}right)_{n,m=1}^infty.] By interpreting $K_alpha$ as the inverse of an unbounded Jacobi matrix, we show that the absolutely continuous spectrum coincides with $[0, 2/alpha]$ (multiplicity one), and that there is no singular continuous spectrum. There are a finite number of eigenvalues above the continuous spectrum. We apply our results to demonstrate that the reproducing kernel thesis does not hold for composition operators on the Hardy space of Dirichlet series $mathscr{H}^2$.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47955589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Stability and Hölder regularity of solutions to complex Monge–Ampère equations on compact Hermitian manifolds 紧致Hermitian流形上复杂Monge–Ampère方程解的稳定性和Hölder正则性
IF 0.7 4区 数学
Annales De L Institut Fourier Pub Date : 2020-03-18 DOI: 10.5802/aif.3436
C. H. Lu, Trong Phung, T. Tô
{"title":"Stability and Hölder regularity of solutions to complex Monge–Ampère equations on compact Hermitian manifolds","authors":"C. H. Lu, Trong Phung, T. Tô","doi":"10.5802/aif.3436","DOIUrl":"https://doi.org/10.5802/aif.3436","url":null,"abstract":"Let $(X,omega)$ be a compact Hermitian manifold. We establish a stability result for solutions to complex Monge-Ampere equations with right-hand side in $L^p$, $p>1$. Using this we prove that the solutions are Holder continuous with the same exponent as in the Kahler case cite{DDGKPZ14}. Our techniques also apply to the setting of big cohomology classes on compact Kahler manifolds.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41564622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Nonlinear aspects of super weakly compact sets 超弱紧集的非线性方面
IF 0.7 4区 数学
Annales De L Institut Fourier Pub Date : 2020-03-02 DOI: 10.5802/aif.3488
G. Lancien, M. Raja
{"title":"Nonlinear aspects of super weakly compact sets","authors":"G. Lancien, M. Raja","doi":"10.5802/aif.3488","DOIUrl":"https://doi.org/10.5802/aif.3488","url":null,"abstract":"We study the notion of super weakly compact subsets of a Banach space, which can be described as a local version of super-reflexivity. Our first result is that the closed convex hull of a super weakly compact set is super weakly compact. This allows us to extend to the non convex setting the main properties of these sets. In particular, we give non linear characterizations of super weak compactness in terms of the (non) embeddability of special trees and graphs. We conclude with a few relevant examples of super weakly compact sets in non super-reflexive Banach spaces.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71210054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Semigroup-fication of univalent self-maps of the unit disc 单位圆盘的单价自映射的半群化
IF 0.7 4区 数学
Annales De L Institut Fourier Pub Date : 2020-02-19 DOI: 10.5802/aif.3517
F. Bracci, Oliver Roth
{"title":"Semigroup-fication of univalent self-maps of the unit disc","authors":"F. Bracci, Oliver Roth","doi":"10.5802/aif.3517","DOIUrl":"https://doi.org/10.5802/aif.3517","url":null,"abstract":"Let $f$ be a univalent self-map of the unit disc. We introduce a technique, that we call {sl semigroup-fication}, which allows to construct a continuous semigroup $(phi_t)$ of holomorphic self-maps of the unit disc whose time one map $phi_1$ is, in a sense, very close to $f$. The semigrup-fication of $f$ is of the same type as $f$ (elliptic, hyperbolic, parabolic of positive step or parabolic of zero step) and there is a one-to-one correspondence between the set of boundary regular fixed points of $f$ with a given multiplier and the corresponding set for $phi_1$. Moreover, in case $f$ (and hence $phi_1$) has no interior fixed points, the slope of the orbits converging to the Denjoy-Wolff point is the same. The construction is based on holomorphic models, localization techniques and Gromov hyperbolicity. As an application of this construction, we prove that in the non-elliptic case, the orbits of $f$ converge non-tangentially to the Denjoy-Wolff point if and only if the Koenigs domain of $f$ is \"almost symmetric\" with respect to vertical lines.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48096100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Linearization of transition functions of a semi-positive line bundle along a certain submanifold 半正线性丛沿某个子流形过渡函数的线性化
IF 0.7 4区 数学
Annales De L Institut Fourier Pub Date : 2020-02-18 DOI: 10.5802/aif.3439
T. Koike
{"title":"Linearization of transition functions of a semi-positive line bundle along a certain submanifold","authors":"T. Koike","doi":"10.5802/aif.3439","DOIUrl":"https://doi.org/10.5802/aif.3439","url":null,"abstract":"Let $X$ be a complex manifold and $L$ be a holomorphic line bundle on $X$. Assume that $L$ is semi-positive, namely $L$ admits a smooth Hermitian metric with semi-positive Chern curvature. Let $Y$ be a compact Kahler submanifold of $X$ such that the restriction of $L$ to $Y$ is topologically trivial. We investigate the obstruction for $L$ to be unitary flat on a neighborhood of $Y$ in $X$. As an application, for example, we show the existence of nef, big, and non semi-positive line bundle on a non-singular projective surface.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48404432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Braid groups of normalizers of reflection subgroups 反射子群的归一化器的编织群
IF 0.7 4区 数学
Annales De L Institut Fourier Pub Date : 2020-02-13 DOI: 10.5802/aif.3440
T. Gobet, A. Henderson, Ivan Marin
{"title":"Braid groups of normalizers of reflection subgroups","authors":"T. Gobet, A. Henderson, Ivan Marin","doi":"10.5802/aif.3440","DOIUrl":"https://doi.org/10.5802/aif.3440","url":null,"abstract":"Let $W_0$ be a reflection subgroup of a finite complex reflection group $W$, and let $B_0$ and $B$ be their respective braid groups. In order to construct a Hecke algebra $widetilde{H}_0$ for the normalizer $N_W(W_0)$, one first considers a natural subquotient $widetilde{B}_0$ of $B$ which is an extension of $N_W(W_0)/W_0$ by $B_0$. We prove that this extension is split when $W$ is a Coxeter group, and deduce a standard basis for the Hecke algebra $widetilde{H}_0$. We also give classes of both split and non-split examples in the non-Coxeter case.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43830235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Higher dimensional essential minima and equidistribution of cycles 高维基本极小值和循环的均匀分布
IF 0.7 4区 数学
Annales De L Institut Fourier Pub Date : 2020-01-30 DOI: 10.5802/aif.3500
R. Gualdi, C. Mart'inez
{"title":"Higher dimensional essential minima and equidistribution of cycles","authors":"R. Gualdi, C. Mart'inez","doi":"10.5802/aif.3500","DOIUrl":"https://doi.org/10.5802/aif.3500","url":null,"abstract":"The essential minimum and equidistribution of small points are two well-established interrelated subjects in arithmetic geometry. However, there is lack of an analogue of essential minimum dealing with higher dimensional subvarieties, and the equidistribution of these is a far less explored topic. \u0000In this paper, we introduce a new notion of higher dimensional essential minimum and use it to prove equidistribution of generic and small effective cycles. The latter generalizes the previous higher dimensional equidistribution theorems by considering cycles and by allowing more fexibility on the arithmetic datum.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48781261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A general theory of André’s solution algebras 安德烈解代数的一般理论
IF 0.7 4区 数学
Annales De L Institut Fourier Pub Date : 2020-01-25 DOI: 10.5802/AIF.3383
L. Nagy, Tam'as Szamuely
{"title":"A general theory of André’s solution algebras","authors":"L. Nagy, Tam'as Szamuely","doi":"10.5802/AIF.3383","DOIUrl":"https://doi.org/10.5802/AIF.3383","url":null,"abstract":"We extend Yves Andre's theory of solution algebras in differential Galois theory to a general Tannakian context. As applications, we establish analogues of his correspondence between solution fields and observable subgroups of the Galois group for iterated differential equations in positive characteristic and for difference equations. The use of solution algebras in the difference algebraic context also allows a new approach to recent results of Philippon and Adamczewski--Faverjon in transcendence theory.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44847254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Subcritical well-posedness results for the Zakharov–Kuznetsov equation in dimension three and higher 三维及更高维Zakharov-Kuznetsov方程的次临界适定性结果
IF 0.7 4区 数学
Annales De L Institut Fourier Pub Date : 2020-01-24 DOI: 10.5802/aif.3547
S. Herr, S. Kinoshita
{"title":"Subcritical well-posedness results for the Zakharov–Kuznetsov equation in dimension three and higher","authors":"S. Herr, S. Kinoshita","doi":"10.5802/aif.3547","DOIUrl":"https://doi.org/10.5802/aif.3547","url":null,"abstract":"The Zakharov-Kuznetsov equation in space dimension $dgeq 3$ is considered. It is proved that the Cauchy problem is locally well-posed in $H^s(mathbb{R}^d)$ in the full subcritical range $s>(d-4)/2$, which is optimal up to the endpoint. As a corollary, global well-posedness in $L^2(mathbb{R}^3)$ and, under a smallness condition, in $H^1(mathbb{R}^4)$, follow.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48122282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Minimal time issues for the observability of Grushin-type equations grushin型方程可观测性的最小时间问题
IF 0.7 4区 数学
Annales De L Institut Fourier Pub Date : 2020-01-01 DOI: 10.5802/AIF.3313
K. Beauchard, J. Dardé, S. Ervedoza
{"title":"Minimal time issues for the observability of Grushin-type equations","authors":"K. Beauchard, J. Dardé, S. Ervedoza","doi":"10.5802/AIF.3313","DOIUrl":"https://doi.org/10.5802/AIF.3313","url":null,"abstract":"The goal of this article is to provide several sharp results on the minimal time required for observability of several Grushin-type equations. Namely, it is by now well-known that Grushin-type equations are degenerate parabolic equations for which some geometric conditions are needed to get observability properties, contrarily to the usual parabolic equations. Our results concern the Grushin operator $partial_t - Delta_{x} - |x|^2 Delta_{y}$ observed from the whole boundary in the multi-dimensional setting (meaning that $x in Omega_x$, where $Omega_x$ is a subset of $mathbb{R}^{d_x}$ with $d_x geq 1$, $y in Omega_y$, where $Omega_y$ is a subset of $mathbb{R}^{d_y}$ with $d_y geq 1$, and the observation is done on $Gamma = partial Omega_x times Omega_y$), from one lateral boundary in the one-dimensional setting (i.e. $d_x = 1$), including some generalized version of the form $partial_t - partial_{x}^2 - (q(x))^2 partial_{y}^2$ for suitable functions $q$, and the Heisenberg operator $partial_t - partial_{x}^2 -(x partial_z + partial_y)^2$ observed from one lateral boundary. In all these cases, our approach strongly relies on the analysis of the family of equations obtained by using the Fourier expansion of the equations in the $y$ (or $(y,z)$) variables, and in particular the asymptotic of the cost of observability in the Fourier parameters. Combining these estimates with results on the rate of dissipation of each of these equations, we obtain observability estimates in suitably large times. We then show that the times we obtain to get observability are optimal in several cases using Agmon type estimates.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71208544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信