Braid groups of normalizers of reflection subgroups

IF 0.8 4区 数学 Q2 MATHEMATICS
T. Gobet, A. Henderson, Ivan Marin
{"title":"Braid groups of normalizers of reflection subgroups","authors":"T. Gobet, A. Henderson, Ivan Marin","doi":"10.5802/aif.3440","DOIUrl":null,"url":null,"abstract":"Let $W_0$ be a reflection subgroup of a finite complex reflection group $W$, and let $B_0$ and $B$ be their respective braid groups. In order to construct a Hecke algebra $\\widetilde{H}_0$ for the normalizer $N_W(W_0)$, one first considers a natural subquotient $\\widetilde{B}_0$ of $B$ which is an extension of $N_W(W_0)/W_0$ by $B_0$. We prove that this extension is split when $W$ is a Coxeter group, and deduce a standard basis for the Hecke algebra $\\widetilde{H}_0$. We also give classes of both split and non-split examples in the non-Coxeter case.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3440","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Let $W_0$ be a reflection subgroup of a finite complex reflection group $W$, and let $B_0$ and $B$ be their respective braid groups. In order to construct a Hecke algebra $\widetilde{H}_0$ for the normalizer $N_W(W_0)$, one first considers a natural subquotient $\widetilde{B}_0$ of $B$ which is an extension of $N_W(W_0)/W_0$ by $B_0$. We prove that this extension is split when $W$ is a Coxeter group, and deduce a standard basis for the Hecke algebra $\widetilde{H}_0$. We also give classes of both split and non-split examples in the non-Coxeter case.
反射子群的归一化器的编织群
设$W_0$是有限复反射群$W$的反射子群,设$B_0$和$B$是它们各自的辫子群。为了构造Hecke代数$\widetilde{H}_0$对于归一化器$N_W(W_0)$,首先考虑自然子商$\widetilde{B}_0$B$的$,它是$N_W(W_0)/W_0$乘以$B_0$的扩展。我们证明了当$W$是Coxeter群时这个扩展是分裂的,并推导出Hecke代数$\widetilde的一个标准基{H}_0$。在非Coxeter情况下,我们还给出了分裂和非分裂的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
审稿时长
1 months
期刊介绍: The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French. The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信