Higher dimensional essential minima and equidistribution of cycles

Pub Date : 2020-01-30 DOI:10.5802/aif.3500
R. Gualdi, C. Mart'inez
{"title":"Higher dimensional essential minima and equidistribution of cycles","authors":"R. Gualdi, C. Mart'inez","doi":"10.5802/aif.3500","DOIUrl":null,"url":null,"abstract":"The essential minimum and equidistribution of small points are two well-established interrelated subjects in arithmetic geometry. However, there is lack of an analogue of essential minimum dealing with higher dimensional subvarieties, and the equidistribution of these is a far less explored topic. \nIn this paper, we introduce a new notion of higher dimensional essential minimum and use it to prove equidistribution of generic and small effective cycles. The latter generalizes the previous higher dimensional equidistribution theorems by considering cycles and by allowing more fexibility on the arithmetic datum.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The essential minimum and equidistribution of small points are two well-established interrelated subjects in arithmetic geometry. However, there is lack of an analogue of essential minimum dealing with higher dimensional subvarieties, and the equidistribution of these is a far less explored topic. In this paper, we introduce a new notion of higher dimensional essential minimum and use it to prove equidistribution of generic and small effective cycles. The latter generalizes the previous higher dimensional equidistribution theorems by considering cycles and by allowing more fexibility on the arithmetic datum.
分享
查看原文
高维基本极小值和循环的均匀分布
本质极小值和小点的等分布是算术几何中两个公认的相互关联的主题。然而,缺乏处理高维子变体的本质极小值的类似物,并且这些子变体的均匀分布是一个远未被探索的主题。在本文中,我们引入了一个新的高维本质极小的概念,并用它来证明一般有效环和小有效环的等分布。后者通过考虑循环和在算术数据上允许更多的灵活性来推广先前的高维等分布定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信