Linearization of transition functions of a semi-positive line bundle along a certain submanifold

IF 0.8 4区 数学 Q2 MATHEMATICS
T. Koike
{"title":"Linearization of transition functions of a semi-positive line bundle along a certain submanifold","authors":"T. Koike","doi":"10.5802/aif.3439","DOIUrl":null,"url":null,"abstract":"Let $X$ be a complex manifold and $L$ be a holomorphic line bundle on $X$. Assume that $L$ is semi-positive, namely $L$ admits a smooth Hermitian metric with semi-positive Chern curvature. Let $Y$ be a compact Kahler submanifold of $X$ such that the restriction of $L$ to $Y$ is topologically trivial. We investigate the obstruction for $L$ to be unitary flat on a neighborhood of $Y$ in $X$. As an application, for example, we show the existence of nef, big, and non semi-positive line bundle on a non-singular projective surface.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3439","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

Let $X$ be a complex manifold and $L$ be a holomorphic line bundle on $X$. Assume that $L$ is semi-positive, namely $L$ admits a smooth Hermitian metric with semi-positive Chern curvature. Let $Y$ be a compact Kahler submanifold of $X$ such that the restriction of $L$ to $Y$ is topologically trivial. We investigate the obstruction for $L$ to be unitary flat on a neighborhood of $Y$ in $X$. As an application, for example, we show the existence of nef, big, and non semi-positive line bundle on a non-singular projective surface.
半正线性丛沿某个子流形过渡函数的线性化
设$X$是复流形,$L$是$X$上的全纯线丛。假设$L$是半正的,即$L$允许具有半正Chern曲率的光滑Hermitian度量。设$Y$是$X$的紧致Kahler子流形,使得$L$到$Y$的限制在拓扑上是平凡的。我们调查了$L$在$X$中$Y$附近成为单一公寓的障碍。作为一个应用,例如,我们证明了在非奇异投影曲面上nef、big和非半正线性丛的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
审稿时长
1 months
期刊介绍: The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French. The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信