安德烈解代数的一般理论

IF 0.8 4区 数学 Q2 MATHEMATICS
L. Nagy, Tam'as Szamuely
{"title":"安德烈解代数的一般理论","authors":"L. Nagy, Tam'as Szamuely","doi":"10.5802/AIF.3383","DOIUrl":null,"url":null,"abstract":"We extend Yves Andre's theory of solution algebras in differential Galois theory to a general Tannakian context. As applications, we establish analogues of his correspondence between solution fields and observable subgroups of the Galois group for iterated differential equations in positive characteristic and for difference equations. The use of solution algebras in the difference algebraic context also allows a new approach to recent results of Philippon and Adamczewski--Faverjon in transcendence theory.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A general theory of André’s solution algebras\",\"authors\":\"L. Nagy, Tam'as Szamuely\",\"doi\":\"10.5802/AIF.3383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend Yves Andre's theory of solution algebras in differential Galois theory to a general Tannakian context. As applications, we establish analogues of his correspondence between solution fields and observable subgroups of the Galois group for iterated differential equations in positive characteristic and for difference equations. The use of solution algebras in the difference algebraic context also allows a new approach to recent results of Philippon and Adamczewski--Faverjon in transcendence theory.\",\"PeriodicalId\":50781,\"journal\":{\"name\":\"Annales De L Institut Fourier\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Fourier\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/AIF.3383\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/AIF.3383","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们将Yves Andre在微分伽罗瓦理论中的解代数理论推广到一般的Tannakian环境。作为应用,我们建立了具有正特征的迭代微分方程和差分方程的伽罗瓦群的解域与可观测子群对应关系的类似物。在差分代数环境中使用解代数也为超越理论中Philippon和Adamczewski—Faverjon的最新结果提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general theory of André’s solution algebras
We extend Yves Andre's theory of solution algebras in differential Galois theory to a general Tannakian context. As applications, we establish analogues of his correspondence between solution fields and observable subgroups of the Galois group for iterated differential equations in positive characteristic and for difference equations. The use of solution algebras in the difference algebraic context also allows a new approach to recent results of Philippon and Adamczewski--Faverjon in transcendence theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
审稿时长
1 months
期刊介绍: The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French. The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信