紧致Hermitian流形上复杂Monge–Ampère方程解的稳定性和Hölder正则性

Pub Date : 2020-03-18 DOI:10.5802/aif.3436
C. H. Lu, Trong Phung, T. Tô
{"title":"紧致Hermitian流形上复杂Monge–Ampère方程解的稳定性和Hölder正则性","authors":"C. H. Lu, Trong Phung, T. Tô","doi":"10.5802/aif.3436","DOIUrl":null,"url":null,"abstract":"Let $(X,\\omega)$ be a compact Hermitian manifold. We establish a stability result for solutions to complex Monge-Ampere equations with right-hand side in $L^p$, $p>1$. Using this we prove that the solutions are Holder continuous with the same exponent as in the Kahler case \\cite{DDGKPZ14}. Our techniques also apply to the setting of big cohomology classes on compact Kahler manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Stability and Hölder regularity of solutions to complex Monge–Ampère equations on compact Hermitian manifolds\",\"authors\":\"C. H. Lu, Trong Phung, T. Tô\",\"doi\":\"10.5802/aif.3436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(X,\\\\omega)$ be a compact Hermitian manifold. We establish a stability result for solutions to complex Monge-Ampere equations with right-hand side in $L^p$, $p>1$. Using this we prove that the solutions are Holder continuous with the same exponent as in the Kahler case \\\\cite{DDGKPZ14}. Our techniques also apply to the setting of big cohomology classes on compact Kahler manifolds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

设$(X,\omega)$是紧致Hermitian流形。我们建立了$L^p$,$p>1$中具有右手边的复杂Monge-Ampere方程解的稳定性结果。利用这一点,我们证明了解是Holder连续的,其指数与Kahler情况下的指数相同。我们的技术也适用于紧Kahler流形上大上同调类的设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stability and Hölder regularity of solutions to complex Monge–Ampère equations on compact Hermitian manifolds
Let $(X,\omega)$ be a compact Hermitian manifold. We establish a stability result for solutions to complex Monge-Ampere equations with right-hand side in $L^p$, $p>1$. Using this we prove that the solutions are Holder continuous with the same exponent as in the Kahler case \cite{DDGKPZ14}. Our techniques also apply to the setting of big cohomology classes on compact Kahler manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信