一些Hardy核矩阵的谱

Pub Date : 2020-03-25 DOI:10.5802/aif.3589
Ole Fredrik Brevig, Karl-Mikael Perfekt, Alexander Pushnitski
{"title":"一些Hardy核矩阵的谱","authors":"Ole Fredrik Brevig, Karl-Mikael Perfekt, Alexander Pushnitski","doi":"10.5802/aif.3589","DOIUrl":null,"url":null,"abstract":"For $\\alpha > 0$ we consider the operator $K_\\alpha \\colon \\ell^2 \\to \\ell^2$ corresponding to the matrix \\[\\left(\\frac{(nm)^{-\\frac{1}{2}+\\alpha}}{[\\max(n,m)]^{2\\alpha}}\\right)_{n,m=1}^\\infty.\\] By interpreting $K_\\alpha$ as the inverse of an unbounded Jacobi matrix, we show that the absolutely continuous spectrum coincides with $[0, 2/\\alpha]$ (multiplicity one), and that there is no singular continuous spectrum. There are a finite number of eigenvalues above the continuous spectrum. We apply our results to demonstrate that the reproducing kernel thesis does not hold for composition operators on the Hardy space of Dirichlet series $\\mathscr{H}^2$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The spectrum of some Hardy kernel matrices\",\"authors\":\"Ole Fredrik Brevig, Karl-Mikael Perfekt, Alexander Pushnitski\",\"doi\":\"10.5802/aif.3589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For $\\\\alpha > 0$ we consider the operator $K_\\\\alpha \\\\colon \\\\ell^2 \\\\to \\\\ell^2$ corresponding to the matrix \\\\[\\\\left(\\\\frac{(nm)^{-\\\\frac{1}{2}+\\\\alpha}}{[\\\\max(n,m)]^{2\\\\alpha}}\\\\right)_{n,m=1}^\\\\infty.\\\\] By interpreting $K_\\\\alpha$ as the inverse of an unbounded Jacobi matrix, we show that the absolutely continuous spectrum coincides with $[0, 2/\\\\alpha]$ (multiplicity one), and that there is no singular continuous spectrum. There are a finite number of eigenvalues above the continuous spectrum. We apply our results to demonstrate that the reproducing kernel thesis does not hold for composition operators on the Hardy space of Dirichlet series $\\\\mathscr{H}^2$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于$\alpha > 0$,我们考虑对应于矩阵\[\left(\frac{(nm)^{-\frac{1}{2}+\alpha}}{[\max(n,m)]^{2\alpha}}\right)_{n,m=1}^\infty.\]的算子$K_\alpha \colon \ell^2 \to \ell^2$,通过将$K_\alpha$解释为无界Jacobi矩阵的逆,我们证明了绝对连续谱与$[0, 2/\alpha]$重合(多重度为1),并且不存在奇异连续谱。连续谱上有有限个特征值。我们应用我们的结果证明了在Dirichlet级数的Hardy空间$\mathscr{H}^2$上复合算子的再现核命题不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The spectrum of some Hardy kernel matrices
For $\alpha > 0$ we consider the operator $K_\alpha \colon \ell^2 \to \ell^2$ corresponding to the matrix \[\left(\frac{(nm)^{-\frac{1}{2}+\alpha}}{[\max(n,m)]^{2\alpha}}\right)_{n,m=1}^\infty.\] By interpreting $K_\alpha$ as the inverse of an unbounded Jacobi matrix, we show that the absolutely continuous spectrum coincides with $[0, 2/\alpha]$ (multiplicity one), and that there is no singular continuous spectrum. There are a finite number of eigenvalues above the continuous spectrum. We apply our results to demonstrate that the reproducing kernel thesis does not hold for composition operators on the Hardy space of Dirichlet series $\mathscr{H}^2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信