反射子群的归一化器的编织群

Pub Date : 2020-02-13 DOI:10.5802/aif.3440
T. Gobet, A. Henderson, Ivan Marin
{"title":"反射子群的归一化器的编织群","authors":"T. Gobet, A. Henderson, Ivan Marin","doi":"10.5802/aif.3440","DOIUrl":null,"url":null,"abstract":"Let $W_0$ be a reflection subgroup of a finite complex reflection group $W$, and let $B_0$ and $B$ be their respective braid groups. In order to construct a Hecke algebra $\\widetilde{H}_0$ for the normalizer $N_W(W_0)$, one first considers a natural subquotient $\\widetilde{B}_0$ of $B$ which is an extension of $N_W(W_0)/W_0$ by $B_0$. We prove that this extension is split when $W$ is a Coxeter group, and deduce a standard basis for the Hecke algebra $\\widetilde{H}_0$. We also give classes of both split and non-split examples in the non-Coxeter case.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Braid groups of normalizers of reflection subgroups\",\"authors\":\"T. Gobet, A. Henderson, Ivan Marin\",\"doi\":\"10.5802/aif.3440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $W_0$ be a reflection subgroup of a finite complex reflection group $W$, and let $B_0$ and $B$ be their respective braid groups. In order to construct a Hecke algebra $\\\\widetilde{H}_0$ for the normalizer $N_W(W_0)$, one first considers a natural subquotient $\\\\widetilde{B}_0$ of $B$ which is an extension of $N_W(W_0)/W_0$ by $B_0$. We prove that this extension is split when $W$ is a Coxeter group, and deduce a standard basis for the Hecke algebra $\\\\widetilde{H}_0$. We also give classes of both split and non-split examples in the non-Coxeter case.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设$W_0$是有限复反射群$W$的反射子群,设$B_0$和$B$是它们各自的辫子群。为了构造Hecke代数$\widetilde{H}_0$对于归一化器$N_W(W_0)$,首先考虑自然子商$\widetilde{B}_0$B$的$,它是$N_W(W_0)/W_0$乘以$B_0$的扩展。我们证明了当$W$是Coxeter群时这个扩展是分裂的,并推导出Hecke代数$\widetilde的一个标准基{H}_0$。在非Coxeter情况下,我们还给出了分裂和非分裂的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Braid groups of normalizers of reflection subgroups
Let $W_0$ be a reflection subgroup of a finite complex reflection group $W$, and let $B_0$ and $B$ be their respective braid groups. In order to construct a Hecke algebra $\widetilde{H}_0$ for the normalizer $N_W(W_0)$, one first considers a natural subquotient $\widetilde{B}_0$ of $B$ which is an extension of $N_W(W_0)/W_0$ by $B_0$. We prove that this extension is split when $W$ is a Coxeter group, and deduce a standard basis for the Hecke algebra $\widetilde{H}_0$. We also give classes of both split and non-split examples in the non-Coxeter case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信