Semigroup-fication of univalent self-maps of the unit disc

IF 0.8 4区 数学 Q2 MATHEMATICS
F. Bracci, Oliver Roth
{"title":"Semigroup-fication of univalent self-maps of the unit disc","authors":"F. Bracci, Oliver Roth","doi":"10.5802/aif.3517","DOIUrl":null,"url":null,"abstract":"Let $f$ be a univalent self-map of the unit disc. We introduce a technique, that we call {\\sl semigroup-fication}, which allows to construct a continuous semigroup $(\\phi_t)$ of holomorphic self-maps of the unit disc whose time one map $\\phi_1$ is, in a sense, very close to $f$. The semigrup-fication of $f$ is of the same type as $f$ (elliptic, hyperbolic, parabolic of positive step or parabolic of zero step) and there is a one-to-one correspondence between the set of boundary regular fixed points of $f$ with a given multiplier and the corresponding set for $\\phi_1$. Moreover, in case $f$ (and hence $\\phi_1$) has no interior fixed points, the slope of the orbits converging to the Denjoy-Wolff point is the same. The construction is based on holomorphic models, localization techniques and Gromov hyperbolicity. As an application of this construction, we prove that in the non-elliptic case, the orbits of $f$ converge non-tangentially to the Denjoy-Wolff point if and only if the Koenigs domain of $f$ is \"almost symmetric\" with respect to vertical lines.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3517","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let $f$ be a univalent self-map of the unit disc. We introduce a technique, that we call {\sl semigroup-fication}, which allows to construct a continuous semigroup $(\phi_t)$ of holomorphic self-maps of the unit disc whose time one map $\phi_1$ is, in a sense, very close to $f$. The semigrup-fication of $f$ is of the same type as $f$ (elliptic, hyperbolic, parabolic of positive step or parabolic of zero step) and there is a one-to-one correspondence between the set of boundary regular fixed points of $f$ with a given multiplier and the corresponding set for $\phi_1$. Moreover, in case $f$ (and hence $\phi_1$) has no interior fixed points, the slope of the orbits converging to the Denjoy-Wolff point is the same. The construction is based on holomorphic models, localization techniques and Gromov hyperbolicity. As an application of this construction, we prove that in the non-elliptic case, the orbits of $f$ converge non-tangentially to the Denjoy-Wolff point if and only if the Koenigs domain of $f$ is "almost symmetric" with respect to vertical lines.
单位圆盘的单价自映射的半群化
设$f$是单位圆盘的一价自映射。我们引入了一种称为{\sl半群化}的技术,该技术允许构造单位圆盘的全纯自映射的连续半群$(\ phi_t)$,其时间映射$\ phi_1$在某种意义上非常接近$f$。$f$的半粗化与$f$(椭圆、双曲、正阶抛物或零阶抛物)具有相同的类型,并且具有给定乘法器的$f$边界正则不动点集与$\phi_1$的对应集之间存在一一对应关系。此外,在$f$(因此$\phi_1$)没有内部不动点的情况下,收敛到Denjoy-Wolff点的轨道的斜率是相同的。该构造基于全纯模型、定位技术和Gromov双曲性。作为该构造的一个应用,我们证明了在非椭圆情况下,$f$的轨道与Denjoy-Wolff点不相切地收敛,当且仅当$f$中的Koenigs域相对于垂线“几乎对称”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
审稿时长
1 months
期刊介绍: The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French. The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信