Carbon Letters最新文献

筛选
英文 中文
Two-dimensional MXene@ZIF-8 hybrid-derived TiO2/TiN@N-C heterostructure as an emerging material for electrochemical sensing 作为新兴电化学传感材料的二维 MXene@ZIF-8 杂化 TiO2/TiN@N-C 异质结构
IF 5.5 3区 材料科学
Carbon Letters Pub Date : 2024-04-15 DOI: 10.1007/s42823-024-00726-0
Yanhong Zeng, Yong Tang, Mei Liu, Can Wu
{"title":"Two-dimensional MXene@ZIF-8 hybrid-derived TiO2/TiN@N-C heterostructure as an emerging material for electrochemical sensing","authors":"Yanhong Zeng,&nbsp;Yong Tang,&nbsp;Mei Liu,&nbsp;Can Wu","doi":"10.1007/s42823-024-00726-0","DOIUrl":"10.1007/s42823-024-00726-0","url":null,"abstract":"<div><p>Herein, facile room-temperature self-assembly and high-temperature pyrolysis strategy was successively conducted for in situ synthesizing novel TiO<sub>2</sub>/TiN@N-C heterostructure by using typical sandwich-like precursors (MXene/ZIF-8). Zero-dimensional (0D) TiO<sub>2</sub>, TiN and N-doped carbon nanoparticles were in situ formed and randomly anchored on the two-dimensional (2D) N-doped carbon substrate surface, making TiO<sub>2</sub>/TiN@N-C exhibit unique 0D/2D heterostructure. Relative to the extensively studied ZIF-8-derived N-doped carbon nanoparticles, TiO<sub>2</sub>/TiN@N-C heterostructure displayed greatly boosted electrochemical active specific surface. Benefiting from the enhanced electrochemical property of TiO<sub>2</sub>/TiN@N-C heterostructure, remarkable signal enhancement effect was achieved in terms of the oxidation of multiple hazardous substances, including clozapine, sunset yellow and benomyl. As a result, a novel electrochemical platform was constructed, the linear detection range were 10–1000 nM, 2.5–1250 nM, 10–1000 nM while the detection limits were evaluated to be 3.5 nM, 1.2 nM, 4.5 nM for clozapine, sunset yellow and benomyl, respectively. Besides, the practicability of the newly developed electrochemical method was verified by assessing the content of clozapine, sunset yellow and benomyl in real food samples.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 7","pages":"1887 - 1898"},"PeriodicalIF":5.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of alignment and size of fillers on the thermal conductivity of magnetic-responsive exfoliated graphite@BN epoxy composites 填料的排列和尺寸对磁响应剥离石墨@BN 环氧树脂复合材料热导率的影响
IF 5.5 3区 材料科学
Carbon Letters Pub Date : 2024-04-13 DOI: 10.1007/s42823-024-00729-x
Hyunji Shin, Seo Mi Yang, Jae Seo Park, Seung Jae Yang
{"title":"Effects of alignment and size of fillers on the thermal conductivity of magnetic-responsive exfoliated graphite@BN epoxy composites","authors":"Hyunji Shin,&nbsp;Seo Mi Yang,&nbsp;Jae Seo Park,&nbsp;Seung Jae Yang","doi":"10.1007/s42823-024-00729-x","DOIUrl":"10.1007/s42823-024-00729-x","url":null,"abstract":"<div><p>Efforts have been extensively undertaken to tackle overheating problems in advanced electronic devices characterized by high performance and integration levels. Thermal interface materials (TIMs) play a crucial role in connecting heat sources to heat sinks, facilitating efficient heat dissipation and thermal management. On the other hand, increasing the content of TIMs for high thermal conductivity often poses challenges such as poor dispersion and undesired heat flow pathways. This study aims to enhance the through-plane heat dissipation via the magnetic alignment of a hybrid filler system consisting of exfoliated graphite (EG) and boron nitride (BN). The EG acts as a distributed scaffold in the polymer matrix, while the BN component of the hybrid offers high thermal conductivity. Moreover, the magnetic alignment technique promotes unidirectional heat transfer pathways. The hybrid exhibited an impressive thermal conductivity of 1.44 W m<sup>−1</sup> K<sup>−1</sup> at filler contents of 30 wt. %, offering improved thermal management for advanced electronic devices.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 7","pages":"1877 - 1885"},"PeriodicalIF":5.5,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High capacitance sustainable low-cost cold plasma exposed activated carbon electrode derived from orange peel waste to eco-friendly technique 利用橘皮废料制成的高电容可持续低成本冷等离子体暴露活性炭电极的环保技术
IF 5.5 3区 材料科学
Carbon Letters Pub Date : 2024-04-11 DOI: 10.1007/s42823-024-00722-4
K. A. Vijayalakshmi, K. C. Sowmiya
{"title":"High capacitance sustainable low-cost cold plasma exposed activated carbon electrode derived from orange peel waste to eco-friendly technique","authors":"K. A. Vijayalakshmi,&nbsp;K. C. Sowmiya","doi":"10.1007/s42823-024-00722-4","DOIUrl":"10.1007/s42823-024-00722-4","url":null,"abstract":"<div><p>This study pioneers a transformative approach of discarded orange peels (<i>Citrus sinensis</i>) into highly porous carbon, demonstrating its potential application in energy storage devices. The porous carbon structure offers a substantial surface area, making it conducive for effective ion adsorption and storage, thereby enhancing capacitance. The comprehensive characterization, including X-ray diffraction, Fourier transform infrared, Raman spectroscopy, field emission scanning electron microscopy, and XPS verifies the material’s suitability for energy storage applications by confirming its nature, functional groups, graphitic structure, porous morphology and surface elemental compositions. Moreover, the introduced plasma treatment not only improves the material’s intensity, bending vibrations, and morphology but also increases capacitance, as evidenced by galvanostatic charge–discharge tests. The air plasma-treated carbon exhibits a noteworthy capacitance of 1916F/g at 0.05A/g in 2 M KOH electrolyte. long term cyclic stability has been conducted up to 10,000 cycles, the calculated capacitance retention and columbic efficiency is 92.7% and 97.6%. These advancements underscore the potential of utilizing activated carbon from agricultural waste in capacitors and supercapatteries, offering a sustainable solution for energy storage with enhanced performance characteristics.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 6","pages":"1737 - 1754"},"PeriodicalIF":5.5,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of moso bamboo columnar activated carbon with high adsorption property via polyacrylamide@asphalt adhesives and steam activation 通过聚丙烯酰胺@沥青粘合剂和蒸汽活化制备具有高吸附性能的毛竹柱状活性炭
IF 5.5 3区 材料科学
Carbon Letters Pub Date : 2024-04-10 DOI: 10.1007/s42823-024-00723-3
Huan Liu, Yu Miao, Huayu Tian, Yishan Chen, Enfu Wang, Jingda Huang, Wenbiao Zhang
{"title":"Preparation of moso bamboo columnar activated carbon with high adsorption property via polyacrylamide@asphalt adhesives and steam activation","authors":"Huan Liu,&nbsp;Yu Miao,&nbsp;Huayu Tian,&nbsp;Yishan Chen,&nbsp;Enfu Wang,&nbsp;Jingda Huang,&nbsp;Wenbiao Zhang","doi":"10.1007/s42823-024-00723-3","DOIUrl":"10.1007/s42823-024-00723-3","url":null,"abstract":"<div><p>Moso bamboo, as a kind of renewable functional material, exhibits outstanding development potential. It is promising to prepare activated carbon with good mechanical strength and high specific surface area using moso bamboo as raw material. In this work, we employed a hydraulic extruder to extrude the bamboo charcoal and the adhesive to obtain the moso bamboo activated carbon, and improved the specific surface area of the columnar activated carbon through high-temperature water vapor activation. Through the catalytic role of the water vapor activation process, the formation and expansion of the pores were promoted and the internal pores were greatly increased. The obtained columnar activated carbon shows excellent mechanical strength (93%) and high specific surface area (791.54 m<sup>2</sup>/g). Polyacrylamide@asphalt is one of the most effective adhesives in the high-temperature water vapor activation. The average pore size (22.99 nm) and pore volume (0.36 cm<sup>3</sup>/g) of the prepared columnar activated carbon showed a high mesoporous ratio (83%). Based on the excellent pore structure brought by the activation process, the adsorption capacity of iodine (1135.75 mg/g), methylene blue (230 mg/g) and carbon tetrachloride (64.03 mg/g) were greatly improved. The resultant moso bamboo columnar activated carbon with high specific surface area, excellent mechanical properties, and outstanding adsorption capacity possesses a wide range of industrial applications and environmental protection potential.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 6","pages":"1723 - 1736"},"PeriodicalIF":5.5,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of flexible nitrogen-doped graphene micro-supercapacitors by laser-induced self-made precursors 利用激光诱导自制前驱体制作柔性氮掺杂石墨烯微型超级电容器
IF 5.5 3区 材料科学
Carbon Letters Pub Date : 2024-04-08 DOI: 10.1007/s42823-024-00725-1
Zhiru Yang, Jinxing Li, Jiaoyi Wu, Hai Zhou, Wentao Hou
{"title":"Fabrication of flexible nitrogen-doped graphene micro-supercapacitors by laser-induced self-made precursors","authors":"Zhiru Yang,&nbsp;Jinxing Li,&nbsp;Jiaoyi Wu,&nbsp;Hai Zhou,&nbsp;Wentao Hou","doi":"10.1007/s42823-024-00725-1","DOIUrl":"10.1007/s42823-024-00725-1","url":null,"abstract":"<div><p>With the wide application of portable wearable devices, a variety of electronic energy storage devices, including micro-supercapacitors (MSCs), have attracted wide attention. Laser-induced graphene (LIG) is widely used as electrode material for MSCs because of its large porosity and specific surface area. To further improve the performance of MSCs, it is an effective way to increase the specific surface area and the number of internal active sites of laser-induced graphene electrode materials. In this paper, N-doped polyimide/polyvinyl alcohol (PVA) as precursor was used to achieve in situ doping of nitrogen atoms in laser-induced graphene by laser irradiation. Through the addition of N atoms, nitrogen-doped laser-induced three-dimensional porous graphene (N-LIG) exhibits large specific surface area, many active sites, and good wettability all of which are favorable conditions for enhancing the capacitive properties of laser-induced graphene. After assembly with PVA/H<sub>2</sub>SO<sub>4</sub> as gel electrolyte, the high surface capacitance of the MSC device with N-LIG as electrode material is 16.57 mF cm<sup>−2</sup> at the scanning rate of 5 mV s<sup>−1</sup>, which is much higher than the 2.89 mF cm<sup>−2</sup> of the MSC device with LIG as electrode material. In addition, MSC devices with N-LIG as electrode materials have shown excellent cyclic stability and flexibility in practical tests, so they have a high application prospect in the field of flexible wearable microelectronics.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 6","pages":"1707 - 1721"},"PeriodicalIF":5.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of carbon coating and MCMB structures used in graphite anodes for potassium ion batteries 用于钾离子电池石墨阳极的碳涂层和 MCMB 结构的比较
IF 5.5 3区 材料科学
Carbon Letters Pub Date : 2024-04-06 DOI: 10.1007/s42823-024-00720-6
Ruifeng Huang, Chenghao Xu, Zuyong Feng, Miao He, Kunhua Wen, Li Chen, Tong Liang, Deping Xiong
{"title":"Comparison of carbon coating and MCMB structures used in graphite anodes for potassium ion batteries","authors":"Ruifeng Huang,&nbsp;Chenghao Xu,&nbsp;Zuyong Feng,&nbsp;Miao He,&nbsp;Kunhua Wen,&nbsp;Li Chen,&nbsp;Tong Liang,&nbsp;Deping Xiong","doi":"10.1007/s42823-024-00720-6","DOIUrl":"10.1007/s42823-024-00720-6","url":null,"abstract":"<div><p>This study comprehensively investigates three types of graphite materials as potential anodes for potassium-ion batteries. Natural graphite, artificial carbon-coated graphite, and mesocarbon microbeads (MCMB) are examined for their structural characteristics and electrochemical performances. Structural analyses, including HRTEM, XRD, Raman spectroscopy, and laser particle size measurements, reveal distinct features in each graphite type. XRD spectra confirm that all graphites are composed of pure carbon, with high crystallinity and varying crystal sizes. Raman spectroscopy indicates differences in disorder levels, with artificial carbon-coated graphite exhibiting the highest disorder, attributed to its outer carbon coating. Ex-situ Raman and HRTEM techniques on the electrodes reveal their distinct electrochemical behaviors. MCMB stands out with superior stability and capacity retention during prolonged cycling, attributed to its unique spherical particle structure facilitating potassium-ion diffusion. The study suggests that MCMB holds promise for potassium-ion full batteries. In addition, artificial carbon-coated graphite, despite challenges in hindering potassium-ion diffusion, may find applications in commercial potassium-ion battery anodes with suitable coatings. The research contributes valuable insights into potassium-ion battery anode materials, offering a significant extension to the current understanding of graphite-based electrode performance.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 6","pages":"1693 - 1706"},"PeriodicalIF":5.5,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of superparamagnetic AC/Fe3O4/TiO2 nanoparticles from magnetic waste oily petroleum sludge (MWOPS): comprehensive characterization, H2 production, design batch photoreactor, and treatment of oily petroleum wastewater (OPW) under UVA light 从磁性含油石油废渣(MWOPS)中制备超顺磁性 AC/Fe3O4/TiO2 纳米颗粒:综合表征、H2 产出、设计批量光反应器以及在 UVA 光下处理含油石油废水(OPW)
IF 5.5 3区 材料科学
Carbon Letters Pub Date : 2024-04-03 DOI: 10.1007/s42823-024-00711-7
Saeedeh Rastgar, Hassan Rezaei, Habibollah Younesi, Hajar Abyar
{"title":"Preparation of superparamagnetic AC/Fe3O4/TiO2 nanoparticles from magnetic waste oily petroleum sludge (MWOPS): comprehensive characterization, H2 production, design batch photoreactor, and treatment of oily petroleum wastewater (OPW) under UVA light","authors":"Saeedeh Rastgar,&nbsp;Hassan Rezaei,&nbsp;Habibollah Younesi,&nbsp;Hajar Abyar","doi":"10.1007/s42823-024-00711-7","DOIUrl":"10.1007/s42823-024-00711-7","url":null,"abstract":"<div><p>The intensive development of the petrochemical industry globally reflects the necessity of an efficient approach for oily sludge and wastewater. Hence, for the first time, the current study utilized magnetic waxy diesel sludge (MWOPS) to synthesize activated carbon coated with TiO<sub>2</sub> particles for the removal of total petroleum hydrocarbons (TPH) and COD from oily petroleum wastewater (OPW). The photocatalyst was characterized using CHNOS, elemental analysis was performed using X-ray fluorescence spectroscopy (XRF), field emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HR-TEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectrometer (FTIR), Raman, energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), MAP thermo-gravimetric analysis/differential thermo-gravimetric (TGA–DTG), Brunauer–Emmett–Teller (BET), diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The optimization of synthesized highly porous AC/Fe<sub>3</sub>O<sub>4</sub>/TiO<sub>2</sub> photocatalyst was conducted considering the impacts of pH, temperature, photocatalyst dosage, and UVA<sub>6W</sub> exposure time. The results demonstrated the high capacity of the MWOPS with inherent magnetic potential and desired carbon content for the removal of 91% and 93% of TPH and COD, respectively. The optimum conditions for the OPW treatment were obtained at pH 6.5, photocatalyst dosage of 250 mg, temperature of 35 °C, and UVA<sub>6W</sub> exposure time of 67.5 min. Moreover, the isotherm/kinetic modeling illustrated simultaneous physisorption and chemisorption on heterogeneous and multilayer surfaces. Notably, the adsorption efficiency of the AC/Fe<sub>3</sub>O<sub>4</sub>/TiO<sub>2</sub> decreased by 4% after five adsorption/desorption cycles. Accordingly, the application of a well-designed pioneering photocatalyst from the MWOPS provides a cost-effective approach for industry manufacturers for oily wastewater treatment.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 6","pages":"1673 - 1691"},"PeriodicalIF":5.5,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of polyimide-based activated carbon fibers and their application as the electrode materials of electric double-layer capacitors 聚酰亚胺基活性炭纤维的制备及其作为双电层电容器电极材料的应用
IF 5.5 3区 材料科学
Carbon Letters Pub Date : 2024-04-02 DOI: 10.1007/s42823-024-00705-5
Da-Jung Kang, Hye-Min Lee, Kay-Hyeok An, Byung-Joo Kim
{"title":"Preparation of polyimide-based activated carbon fibers and their application as the electrode materials of electric double-layer capacitors","authors":"Da-Jung Kang,&nbsp;Hye-Min Lee,&nbsp;Kay-Hyeok An,&nbsp;Byung-Joo Kim","doi":"10.1007/s42823-024-00705-5","DOIUrl":"10.1007/s42823-024-00705-5","url":null,"abstract":"<div><p>In this study, polyimide (PI)-based activated carbon fibers (ACFs) were prepared for application as electrode materials in electric double-layer capacitors by varying the steam activation time for the PI fiber prepared under identical cross-linking conditions. The surface morphology and microcrystal structural characteristics of the prepared PI-ACFs were observed by field-emission scanning electron microscopy and X-ray diffractometry, respectively. The textural properties (specific surface area, pore volume, and pore size distribution) of the ACFs were calculated using the Brunauer–Emmett–Teller, Barrett–Joyner–Halenda, and non-local density functional theory equations based on N<sub>2</sub>/77 K adsorption isotherm curve measurements. From the results, the specific surface area and total pore volume of PI-ACFs were determined to be 760–1550 m<sup>2</sup>/g and 0.36–1.03 cm<sup>3</sup>/g, respectively. It was confirmed that the specific surface area and total pore volume tended to continuously increase with the activation time. As for the electrochemical properties of PI-ACFs, the specific capacitance increased from 9.96 to 78.64 F/g owing to the developed specific surface area as the activation time increased.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 6","pages":"1653 - 1666"},"PeriodicalIF":5.5,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examination of hybrid electrode material for energy storage device supercapacitor under various electrolytes 各种电解质下储能装置超级电容器混合电极材料的研究
IF 5.5 3区 材料科学
Carbon Letters Pub Date : 2024-04-02 DOI: 10.1007/s42823-024-00713-5
Joselene Suzan Jennifer Patrick, Niranjana Subrayapillai Ramakrishna, Muthupandi Sankar, Madhavan Joseph, Victor Antony Raj Moses, Shanmuga Sundar Saravanabhavan, Muthukrishnaraj Appusamy, Manikandan Ayyar
{"title":"Examination of hybrid electrode material for energy storage device supercapacitor under various electrolytes","authors":"Joselene Suzan Jennifer Patrick,&nbsp;Niranjana Subrayapillai Ramakrishna,&nbsp;Muthupandi Sankar,&nbsp;Madhavan Joseph,&nbsp;Victor Antony Raj Moses,&nbsp;Shanmuga Sundar Saravanabhavan,&nbsp;Muthukrishnaraj Appusamy,&nbsp;Manikandan Ayyar","doi":"10.1007/s42823-024-00713-5","DOIUrl":"10.1007/s42823-024-00713-5","url":null,"abstract":"<div><p>Energy storage is one of the leading problems being faced globally, due to the population explosion in recent times. The conventional energy sources that are available are on the verge of extinction, hence researchers are keen on developing a storage system that will face the upcoming energy needs. Supercapacitors, also known as ultracapacitors or electrochemical capacitors, are advanced energy storage devices characterised by high power density and rapid charge–discharge cycles. Unlike traditional batteries, supercapacitors store energy through electrostatic separation, offering quick energy release and prolonged operational life. They hold exceptional performance in various applications, from portable electronics to electric vehicles, where their ability to deliver bursts of energy efficiently complements or replaces conventional energy storage solutions. Ongoing research focuses on enhancing energy density and overall efficiency, positioning supercapacitors as pivotal components in the evolving landscape of energy storage technologies. A novel electrode material of NiO/CuO/Co<sub>3</sub>O<sub>4</sub>/rGO was synthesized which when used as a supercapacitor, the highest value of C<sub>S</sub> is 873.14 F/g which is achieved for a current density of 1 A/g under with an energy density of 190 Wh/kg and the highest power density of 2.5 kW/kg along with 87.3% retention after 5000 GCD cycles under 1 M KOH.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 6","pages":"1639 - 1652"},"PeriodicalIF":5.5,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase-shift controller for analog device application using 2-D material 使用二维材料的模拟设备应用移相控制器
IF 5.5 3区 材料科学
Carbon Letters Pub Date : 2024-04-02 DOI: 10.1007/s42823-024-00704-6
Jong Kyung Park, Seul Ki Hong
{"title":"Phase-shift controller for analog device application using 2-D material","authors":"Jong Kyung Park,&nbsp;Seul Ki Hong","doi":"10.1007/s42823-024-00704-6","DOIUrl":"10.1007/s42823-024-00704-6","url":null,"abstract":"<div><p>Numerous research institutes have been studying semiconductor devices using two-dimensional materials for several years. However, the findings of these studies have yet to demonstrate the performance of digital devices that could replace silicon devices in the semiconductor industry. Nonetheless, the high carrier mobility and saturation velocity of 2-D materials remain attractive for semiconductor device performance, particularly in analog devices where these features can be utilized. In this research, we fabricated a phase-shift controller, a typical component of analog circuits, using 2-D materials and verified its operational characteristics. Analog circuits do not require large area integration, so we employed graphene, which has relatively simple formation and processing, as the 2-D material. Devices using graphene as a channel exhibit a V-shaped I–V characteristic, allowing for the input voltage to be adjusted to produce various modes of output characteristics. This means that the same devices can generate a phase-shifted output and an output with double the frequency by simply adjusting the input voltage range. This research is particularly meaningful since it demonstrates not only the potential of 2-D materials but also their potential for direct application to the semiconductor industry. These findings will contribute to the development of system IC technology and various applications.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 6","pages":"1667 - 1672"},"PeriodicalIF":5.5,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信