Ho Jun Moon, Sumin Kim, Myeong Wan Han, Yoong Ahm Kim, Moo-Sung Lee, Jong Hun Han
{"title":"Influence of sulfur promoter on electrical conductivity in direct-spun carbon nanotube fibers","authors":"Ho Jun Moon, Sumin Kim, Myeong Wan Han, Yoong Ahm Kim, Moo-Sung Lee, Jong Hun Han","doi":"10.1007/s42823-025-00859-w","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon nanotube (CNT) fibers were synthesized in this study under a hydrogen atmosphere using the floating-catalyst chemical vapor deposition (CVD) technique. Acetone, ferrocene, and thiophene served as the sources of carbon, catalyst, and promoter, respectively. By adjusting the amount of thiophene, the sulfur molar ratio in the CVD reactor was varied to study its impact on the morphology and composition of the CNT fibers. Raman and TEM analyses showed that the structural properties of the CNTs, especially the production of single-walled CNTs (SWCNTs) with a high Raman I<sub>G</sub>/I<sub>D</sub> ratio of approximately 23.8, can be finely tuned by altering the sulfur content, which also affects the accumulation of spherical carbonaceous particles. Moreover, it was established that the electrical conductivity of the CNT fibers is significantly influenced by their specific components—SWCNTs, multi-walled CNTs (MWCNTs), and spherical carbonaceous particles. The ratios of these components can be adjusted by modifying the molar ratios of catalyst and promoter in the precursor mixture. Remarkably, SWCNTs with enhanced crystallinity were found to substantially improve the electrical conductivity of the CNT fibers, despite the presence of numerous spherical carbon impurities.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 3","pages":"1271 - 1283"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00859-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon nanotube (CNT) fibers were synthesized in this study under a hydrogen atmosphere using the floating-catalyst chemical vapor deposition (CVD) technique. Acetone, ferrocene, and thiophene served as the sources of carbon, catalyst, and promoter, respectively. By adjusting the amount of thiophene, the sulfur molar ratio in the CVD reactor was varied to study its impact on the morphology and composition of the CNT fibers. Raman and TEM analyses showed that the structural properties of the CNTs, especially the production of single-walled CNTs (SWCNTs) with a high Raman IG/ID ratio of approximately 23.8, can be finely tuned by altering the sulfur content, which also affects the accumulation of spherical carbonaceous particles. Moreover, it was established that the electrical conductivity of the CNT fibers is significantly influenced by their specific components—SWCNTs, multi-walled CNTs (MWCNTs), and spherical carbonaceous particles. The ratios of these components can be adjusted by modifying the molar ratios of catalyst and promoter in the precursor mixture. Remarkably, SWCNTs with enhanced crystallinity were found to substantially improve the electrical conductivity of the CNT fibers, despite the presence of numerous spherical carbon impurities.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.