Vijay Choyal, Saurabh Mishra, Nitin Luhadiya, S. I. Kundalwal
{"title":"Development and evaluation of machine-learned interatomic potentials for carbon nanotubes for molecular dynamics simulations","authors":"Vijay Choyal, Saurabh Mishra, Nitin Luhadiya, S. I. Kundalwal","doi":"10.1007/s42823-025-00867-w","DOIUrl":null,"url":null,"abstract":"<div><p>The prime objective of this computational study was to develop a highly accurate potential for the use of molecular dynamics (MD) simulations of carbon nanotubes (CNTs). This potential was generated using ab initio MD (AIMD) simulations based on density functional theory (DFT). Subsequently, we constructed machine-learned interatomic potentials (MLIPs) based on moment tensor potential (MTP) descriptors using AIMD trajectories as training data. The performance of the developed MLIPs was evaluated by conducting the MD simulations of the stress–strain responses of single-walled CNTs (SWCNTs) and defected SWCNTs (D-SWCNTs) under tensile loading. Furthermore, this work includes extensive MLIP-based MD simulations to examine the influence of diameter and chirality, temperature, and defect concentration on the fracture characteristics and Young’s modulus of SWCNTs. The findings demonstrate the computational reliability and transferability of the MLIPs in predicting the mechanical properties of SWCNTs through MD simulations performed over a temperature range of 1 K to 2000 K. The observed stiffnesses correspond to Young’s modulus ranging from 1.61–0.53 TPa with a mean value of 0.936 TPa for different SWCNTs with diameters ranging from 1.1–2.89 nm and temperatures spanning from 1 to 2000 K, exhibiting a noticeable dependence on chirality.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 3","pages":"1311 - 1326"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00867-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The prime objective of this computational study was to develop a highly accurate potential for the use of molecular dynamics (MD) simulations of carbon nanotubes (CNTs). This potential was generated using ab initio MD (AIMD) simulations based on density functional theory (DFT). Subsequently, we constructed machine-learned interatomic potentials (MLIPs) based on moment tensor potential (MTP) descriptors using AIMD trajectories as training data. The performance of the developed MLIPs was evaluated by conducting the MD simulations of the stress–strain responses of single-walled CNTs (SWCNTs) and defected SWCNTs (D-SWCNTs) under tensile loading. Furthermore, this work includes extensive MLIP-based MD simulations to examine the influence of diameter and chirality, temperature, and defect concentration on the fracture characteristics and Young’s modulus of SWCNTs. The findings demonstrate the computational reliability and transferability of the MLIPs in predicting the mechanical properties of SWCNTs through MD simulations performed over a temperature range of 1 K to 2000 K. The observed stiffnesses correspond to Young’s modulus ranging from 1.61–0.53 TPa with a mean value of 0.936 TPa for different SWCNTs with diameters ranging from 1.1–2.89 nm and temperatures spanning from 1 to 2000 K, exhibiting a noticeable dependence on chirality.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.