{"title":"一种用于光催化CO2还原反应甲醇产率原位检测的光纤传感器","authors":"Shihui Wang, Yuyao Lei, Chao He, Junhe Miao, Yang Liu, Quanhua Xie, Karimi-Maleh Hassan, Nianbing Zhong","doi":"10.1007/s42823-025-00876-9","DOIUrl":null,"url":null,"abstract":"<div><p>In the pursuit of achieving in-situ real-time detection of methanol production rate during the photocatalytic reduction of CO<sub>2</sub>, we developed a methanol sensor using a copolymer-coated fiber Bragg gratings. The theoretical model of methanol measurement by sensor was established. The effect of methanol-selective sensitive material and its thickness on the performance of the sensor were investigated. Humidity and temperature interference to sensor measurements was compensated. Furthermore, TiO<sub>2</sub> photocatalyst was prepared and the photocatalytic reactor was constructed. The methanol production rate in the photocatalytic CO<sub>2</sub> reduction process was monitored by the prepared sensor in-situ. The results highlight that the fiber Bragg grating methanol sensor with 600 nm-thick poly(N-isopropylacrylamide)/polymethyl-methacrylate coating showed a high sensitivity, lower limit of detection, fast response and recovery speed, and high selectivity. The methanol generation rate of TiO<sub>2</sub> photocatalytic reduction of CO<sub>2</sub> measured by gas chromatograph and prepared fiber Bragg grating methanol sensor was 1.42 and 1.53 μmol/g-cat·h, respectively, the error of the two detection methods was 7.86%. This highlights the efficacy of the developed fiber Bragg grating methanol sensor for real-time in-situ detection of the methanol production rate during the photocatalytic reduction of CO<sub>2</sub>.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 3","pages":"1337 - 1347"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fiber-optic sensor for in-situ detection of methanol production rate in photocatalytic CO2 reduction reaction\",\"authors\":\"Shihui Wang, Yuyao Lei, Chao He, Junhe Miao, Yang Liu, Quanhua Xie, Karimi-Maleh Hassan, Nianbing Zhong\",\"doi\":\"10.1007/s42823-025-00876-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the pursuit of achieving in-situ real-time detection of methanol production rate during the photocatalytic reduction of CO<sub>2</sub>, we developed a methanol sensor using a copolymer-coated fiber Bragg gratings. The theoretical model of methanol measurement by sensor was established. The effect of methanol-selective sensitive material and its thickness on the performance of the sensor were investigated. Humidity and temperature interference to sensor measurements was compensated. Furthermore, TiO<sub>2</sub> photocatalyst was prepared and the photocatalytic reactor was constructed. The methanol production rate in the photocatalytic CO<sub>2</sub> reduction process was monitored by the prepared sensor in-situ. The results highlight that the fiber Bragg grating methanol sensor with 600 nm-thick poly(N-isopropylacrylamide)/polymethyl-methacrylate coating showed a high sensitivity, lower limit of detection, fast response and recovery speed, and high selectivity. The methanol generation rate of TiO<sub>2</sub> photocatalytic reduction of CO<sub>2</sub> measured by gas chromatograph and prepared fiber Bragg grating methanol sensor was 1.42 and 1.53 μmol/g-cat·h, respectively, the error of the two detection methods was 7.86%. This highlights the efficacy of the developed fiber Bragg grating methanol sensor for real-time in-situ detection of the methanol production rate during the photocatalytic reduction of CO<sub>2</sub>.</p></div>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"35 3\",\"pages\":\"1337 - 1347\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42823-025-00876-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00876-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A fiber-optic sensor for in-situ detection of methanol production rate in photocatalytic CO2 reduction reaction
In the pursuit of achieving in-situ real-time detection of methanol production rate during the photocatalytic reduction of CO2, we developed a methanol sensor using a copolymer-coated fiber Bragg gratings. The theoretical model of methanol measurement by sensor was established. The effect of methanol-selective sensitive material and its thickness on the performance of the sensor were investigated. Humidity and temperature interference to sensor measurements was compensated. Furthermore, TiO2 photocatalyst was prepared and the photocatalytic reactor was constructed. The methanol production rate in the photocatalytic CO2 reduction process was monitored by the prepared sensor in-situ. The results highlight that the fiber Bragg grating methanol sensor with 600 nm-thick poly(N-isopropylacrylamide)/polymethyl-methacrylate coating showed a high sensitivity, lower limit of detection, fast response and recovery speed, and high selectivity. The methanol generation rate of TiO2 photocatalytic reduction of CO2 measured by gas chromatograph and prepared fiber Bragg grating methanol sensor was 1.42 and 1.53 μmol/g-cat·h, respectively, the error of the two detection methods was 7.86%. This highlights the efficacy of the developed fiber Bragg grating methanol sensor for real-time in-situ detection of the methanol production rate during the photocatalytic reduction of CO2.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.