Carbon Balance and Management最新文献

筛选
英文 中文
Maximizing tree carbon in croplands and grazing lands while sustaining yields 在保持产量的同时,最大限度地提高耕地和牧场的树木碳含量。
IF 3.9 3区 环境科学与生态学
Carbon Balance and Management Pub Date : 2024-07-31 DOI: 10.1186/s13021-024-00268-y
Starry Sprenkle-Hyppolite, Bronson Griscom, Vivian Griffey, Erika Munshi, Melissa Chapman
{"title":"Maximizing tree carbon in croplands and grazing lands while sustaining yields","authors":"Starry Sprenkle-Hyppolite,&nbsp;Bronson Griscom,&nbsp;Vivian Griffey,&nbsp;Erika Munshi,&nbsp;Melissa Chapman","doi":"10.1186/s13021-024-00268-y","DOIUrl":"10.1186/s13021-024-00268-y","url":null,"abstract":"<div><h3>Background</h3><p>Integrating trees into agricultural landscapes can provide climate mitigation and improves soil fertility, biodiversity habitat, water quality, water flow, and human health, but these benefits must be achieved without reducing agriculture yields. Prior estimates of carbon dioxide (CO<sub>2</sub>) removal potential from increasing tree cover in agriculture assumed a moderate level of woody biomass can be integrated without reducing agricultural production. Instead, we used a Delphi expert elicitation to estimate maximum tree covers for 53 regional cropping and grazing system categories while safeguarding agricultural yields. Comparing these values to baselines and applying spatially explicit tree carbon accumulation rates, we develop global maps of the additional CO<sub>2</sub> removal potential of Tree Cover in Agriculture. We present here the first global spatially explicit datasets calibrated to regional grazing and croplands, estimating opportunities to increase tree cover without reducing yields, therefore avoiding a major cost barrier to restoration: the opportunity cost of CO<sub>2</sub> removal at the expense of agriculture yields.</p><h3>Results</h3><p>The global estimated maximum technical CO<sub>2</sub> removal potential is split between croplands (1.86 PgCO<sub>2</sub> yr<sup>− 1</sup>) and grazing lands (1.45 PgCO<sub>2</sub> yr<sup>− 1</sup>), with large variances. Tropical/subtropical biomes account for 54% of cropland (2.82 MgCO<sub>2</sub> ha<sup>− 1</sup> yr<sup>− 1</sup>, SD = 0.45) and 73% of grazing land potential (1.54 MgCO<sub>2</sub> ha<sup>− 1</sup> yr<sup>− 1</sup>, SD = 0.47). Potentials seem to be driven by two characteristics: the opportunity for increase in tree cover and bioclimatic factors affecting CO<sub>2</sub> removal rates.</p><h3>Conclusions</h3><p>We find that increasing tree cover in 2.6 billion hectares of agricultural landscapes may remove up to 3.3 billion tons of CO<sub>2</sub> per year – more than the global annual emissions from cars. These Natural Climate Solutions could achieve the Bonn Challenge and add 793 million trees to agricultural landscapes. This is significant for global climate mitigation efforts because it represents a large, relatively inexpensive, additional CO<sub>2</sub> removal opportunity that works within agricultural landscapes and has low economic and social barriers to rapid global scaling. There is an urgent need for policy and incentive systems to encourage the adoption of these practices.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293010/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141858697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainty in REDD+ carbon accounting: a survey of experts involved in REDD+ reporting REDD+ 碳核算的不确定性:对参与 REDD+ 报告的专家的调查
IF 3.9 3区 环境科学与生态学
Carbon Balance and Management Pub Date : 2024-07-27 DOI: 10.1186/s13021-024-00267-z
Brett J. Butler, Emma M. Sass, Javier G. P. Gamarra, John L. Campbell, Craig Wayson, Marcela Olguín, Oswaldo Carrillo, Ruth D. Yanai
{"title":"Uncertainty in REDD+ carbon accounting: a survey of experts involved in REDD+ reporting","authors":"Brett J. Butler,&nbsp;Emma M. Sass,&nbsp;Javier G. P. Gamarra,&nbsp;John L. Campbell,&nbsp;Craig Wayson,&nbsp;Marcela Olguín,&nbsp;Oswaldo Carrillo,&nbsp;Ruth D. Yanai","doi":"10.1186/s13021-024-00267-z","DOIUrl":"10.1186/s13021-024-00267-z","url":null,"abstract":"<div><h3>Background</h3><p>Reducing Emissions from Deforestation and forest Degradation (REDD+) is a program established under the United Nations Framework Convention on Climate Change (UNFCCC) to reduce carbon emissions from forests in developing countries. REDD+ uses an incentive-based approach whereby participating countries are paid to reduce forest carbon loss and increase carbon storage. Country-level carbon accounting is challenging, and estimates of uncertainty in emission reductions are increasingly required in REDD+ reports. This requirement is hard to meet if countries lack the necessary resources, tools, and capabilities. Some REDD+ programs adjust their payments for the uncertainty reported, which presents a perverse incentive because uncertainties are larger if more sources of uncertainty are reported. We surveyed people involved in REDD+ reporting to assess current capacities and barriers to improving estimates of uncertainty.</p><h3>Results</h3><p>Representatives from 27 countries (44% of REDD+ countries at the time of survey implementation) responded to the survey. Nearly all respondents thought it important to include uncertainty in REDD+ reports, but most felt that the uncertainty reporting by their countries was inadequate. Our independent assessment of reports by these countries to the UNFCCC supported this opinion: Most countries reported uncertainty in activity data (91%) but not in emission factors (4–14%). Few countries use more advanced approaches to estimate uncertainty, such as Monte Carlo and Bayesian techniques, and many respondents indicated that they lack expertise, knowledge, or technical assistance. Other barriers include lack of financial resources and appropriate data. Despite these limitations, nearly all respondents indicated a strong desire to improve estimates of uncertainty in REDD+ reports.</p><h3>Conclusions</h3><p>The survey indicated that people involved in REDD+ reporting think it highly important to improve estimates of uncertainty in forest carbon accounting. To meet this challenge, it is essential to understand the obstacles countries face in quantifying uncertainty so we can identify where best to allocate efforts and funds. Investments in training and resources are clearly needed to better quantify uncertainty and would likely have successful outcomes given the strong desire for improvement. Tracking the efficacy of programs implemented to improve estimates of uncertainty would be useful for making further refinements.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00267-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Aboveground live tree carbon stock and change in forests of conterminous United States: influence of stand age Correction to:美国大陆森林地上活树碳储量及其变化:林分年龄的影响
IF 3.9 3区 环境科学与生态学
Carbon Balance and Management Pub Date : 2024-07-13 DOI: 10.1186/s13021-024-00265-1
Coeli M. Hoover, James E. Smith
{"title":"Correction to: Aboveground live tree carbon stock and change in forests of conterminous United States: influence of stand age","authors":"Coeli M. Hoover,&nbsp;James E. Smith","doi":"10.1186/s13021-024-00265-1","DOIUrl":"10.1186/s13021-024-00265-1","url":null,"abstract":"","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00265-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: The largest European forest carbon stocks are in the Dinaric Alps old-growth forests: comparison of direct measurements and standardised approaches 更正:欧洲森林碳储量最大的地区是迪纳拉阿尔卑斯山的原始森林:直接测量与标准化方法的比较。
IF 3.9 3区 环境科学与生态学
Carbon Balance and Management Pub Date : 2024-06-27 DOI: 10.1186/s13021-024-00266-0
Alessia Bono, Giorgio Alberti, Roberta Berretti, Milic Curovic, Vojislav Dukic, Renzo Motta
{"title":"Correction to: The largest European forest carbon stocks are in the Dinaric Alps old-growth forests: comparison of direct measurements and standardised approaches","authors":"Alessia Bono,&nbsp;Giorgio Alberti,&nbsp;Roberta Berretti,&nbsp;Milic Curovic,&nbsp;Vojislav Dukic,&nbsp;Renzo Motta","doi":"10.1186/s13021-024-00266-0","DOIUrl":"10.1186/s13021-024-00266-0","url":null,"abstract":"","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes of soil carbon along precipitation gradients in three typical vegetation types in the Alxa desert region, China 中国阿拉善沙漠地区三种典型植被类型的土壤碳随降水梯度的变化。
IF 3.8 3区 环境科学与生态学
Carbon Balance and Management Pub Date : 2024-06-17 DOI: 10.1186/s13021-024-00264-2
Xinglin Zhu, Jianhua Si, Bing Jia, Xiaohui He, Dongmeng Zhou, Chunlin Wang, Jie Qin, Zijin Liu, Li Zhang
{"title":"Changes of soil carbon along precipitation gradients in three typical vegetation types in the Alxa desert region, China","authors":"Xinglin Zhu,&nbsp;Jianhua Si,&nbsp;Bing Jia,&nbsp;Xiaohui He,&nbsp;Dongmeng Zhou,&nbsp;Chunlin Wang,&nbsp;Jie Qin,&nbsp;Zijin Liu,&nbsp;Li Zhang","doi":"10.1186/s13021-024-00264-2","DOIUrl":"10.1186/s13021-024-00264-2","url":null,"abstract":"<div><p>The changes and influencing factors of soil inorganic carbon (SIC) and organic carbon (SOC) on precipitation gradients are crucial for predicting and evaluating carbon storage changes at the regional scale. However, people’s understanding of the distribution characteristics of SOC and SIC reserves on regional precipitation gradients is insufficient, and the main environmental variables that affect SOC and SIC changes are also not well understood. Therefore, this study focuses on the Alxa region and selects five regions covered by three typical desert vegetation types, <i>Zygophyllum xanthoxylon</i> (ZX), <i>Nitraria tangutorum</i> (NT), and <i>Reaumuria songarica</i> (RS), along the climate transect where precipitation gradually increases. The study analyzes and discusses the variation characteristics of SOC and SIC under different vegetation and precipitation conditions. The results indicate that both SOC and SIC increase with the increase of precipitation, and the increase in SOC is greater with the increase of precipitation. The average SOC content in the 0–300cm profile is NT (4.13 g kg<sup>−1</sup>) &gt; RS (3.61 g kg<sup>−1</sup>) &gt; ZX (3.57 g kg<sup>−1</sup>); The average value of SIC content is: RS (5.78 g kg<sup>−1</sup>) &gt; NT (5.11 g kg<sup>−1</sup>) &gt; ZX (5.02 g kg<sup>−1</sup>). Overall, the multi-annual average precipitation (MAP) in the Alxa region is the most important environmental factor affecting SIC and SOC.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00264-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential long-term, global effects of enhancing the domestic terrestrial carbon sink in the United States through no-till and cover cropping 通过免耕和覆盖种植提高美国国内陆地碳汇的潜在长期全球影响。
IF 3.8 3区 环境科学与生态学
Carbon Balance and Management Pub Date : 2024-06-14 DOI: 10.1186/s13021-024-00256-2
Maridee Weber, Marshall Wise, Patrick Lamers, Yong Wang, Greg Avery, Kendalynn A. Morris, Jae Edmonds
{"title":"Potential long-term, global effects of enhancing the domestic terrestrial carbon sink in the United States through no-till and cover cropping","authors":"Maridee Weber,&nbsp;Marshall Wise,&nbsp;Patrick Lamers,&nbsp;Yong Wang,&nbsp;Greg Avery,&nbsp;Kendalynn A. Morris,&nbsp;Jae Edmonds","doi":"10.1186/s13021-024-00256-2","DOIUrl":"10.1186/s13021-024-00256-2","url":null,"abstract":"<div><h3>Background</h3><p>Achieving a net zero greenhouse gas United States (US) economy is likely to require both deep sectoral mitigation and additional carbon dioxide removals to offset hard-to-abate emissions. Enhancing the terrestrial carbon sink, through practices such as the adoption of no-till and cover cropping agricultural management, could provide a portion of these required offsets. Changing domestic agricultural practices to optimize carbon content, however, might reduce or shift US agricultural commodity outputs and exports, with potential implications on respective global markets and land use patterns. Here, we use an integrated energy-economy-land-climate model to comprehensively assess the global land, trade, and emissions impacts of an adoption of domestic no-till farming and cover cropping practices based on carbon pricing.</p><h3>Results</h3><p>We find that the adoption of these practices varies depending on which aspects of terrestrial carbon are valued. Valuation of all terrestrial carbon resulted in afforestation at the expense of domestic agricultural production. In contrast, a policy valuing soil carbon in agricultural systems specifically indicates strong adoption of no-till and cover cropping for key crops.</p><h3>Conclusions</h3><p>We conclude that under targeted terrestrial carbon incentives, adoption of no-till and cover cropping practices in the US could increase the terrestrial carbon sink with limited effects on crop availability for food and fodder markets. Future work should consider integrated assessment modeling of non-CO<sub>2</sub> greenhouse gas impacts, above ground carbon storage changes, and capital and operating cost considerations.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00256-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Greenhouse gas fluxes of different land uses in mangrove ecosystem of East Kalimantan, Indonesia 印度尼西亚东加里曼丹红树林生态系统不同土地利用的温室气体通量。
IF 3.8 3区 环境科学与生态学
Carbon Balance and Management Pub Date : 2024-06-01 DOI: 10.1186/s13021-024-00263-3
Virni Budi Arifanti, Randi Ade Candra, Chandra Agung Septiadi Putra, Adibtya Asyhari, Adi Gangga, Rasis Putra Ritonga, Muhammad Ilman, Aji W. Anggoro, Nisa Novita
{"title":"Greenhouse gas fluxes of different land uses in mangrove ecosystem of East Kalimantan, Indonesia","authors":"Virni Budi Arifanti,&nbsp;Randi Ade Candra,&nbsp;Chandra Agung Septiadi Putra,&nbsp;Adibtya Asyhari,&nbsp;Adi Gangga,&nbsp;Rasis Putra Ritonga,&nbsp;Muhammad Ilman,&nbsp;Aji W. Anggoro,&nbsp;Nisa Novita","doi":"10.1186/s13021-024-00263-3","DOIUrl":"10.1186/s13021-024-00263-3","url":null,"abstract":"<div><h3>Background</h3><p>Mangrove ecosystems exhibit significant carbon storage and sequestration. Its capacity to store and sequester significant amounts of carbon makes this ecosystem very important for climate change mitigation. Indonesia, owing to the largest mangrove cover in the world, has approximately 3.14 PgC stored in the mangroves, or about 33% of all carbon stored in coastal ecosystems globally. Unfortunately, our comprehensive understanding of carbon flux is hampered by the incomplete repertoire of field measurement data, especially from mangrove ecosystem-rich regions such as Indonesia and Asia Pacific. This study fills the gap in greenhouse gases (GHGs) flux studies in mangrove ecosystems in Indonesia by quantifying the soil CO<sub>2</sub> and CH<sub>4</sub> fluxes for different land use types in mangrove ecosystems, i.e., secondary mangrove (SM), restored mangrove (RM), pond embankment (PE) and active aquaculture pond (AP). Environmental parameters such as soil pore salinity, soil pore water pH, soil temperature, air temperature, air humidity and rainfall are also measured.</p><h3>Results</h3><p>GHG fluxes characteristics varied between land use types and ecological conditions. Secondary mangrove and exposed pond embankment are potential GHG flux sources (68.9 ± 7.0 and 58.5 ± 6.2 MgCO<sub>2</sub>e ha<sup>− 1</sup> yr<sup>− 1</sup>, respectively). Aquaculture pond exhibits the lowest GHG fluxes among other land use types due to constant inundation that serve as a barrier for the release of GHG fluxes to the atmosphere. We found weak relationships between soil CO<sub>2</sub> and CH<sub>4</sub> fluxes and environmental parameters.</p><h3>Conclusions</h3><p>The data and information on GHG fluxes from different land use types in the mangrove ecosystem will be of importance to accurately assess the potential of the mangrove ecosystem to sequester and emit GHGs. This will support the GHG emission reduction target and strategy that had been set up by the Indonesian Government in its Nationally Determined Contributions (NDC) and Indonesia’s 2030 Forest and Other Land Use (FOLU) Net Sink.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00263-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Importance of on-farm research for validating process-based models of climate-smart agriculture 农场研究对于验证基于过程的气候智能型农业模型的重要性。
IF 3.8 3区 环境科学与生态学
Carbon Balance and Management Pub Date : 2024-05-29 DOI: 10.1186/s13021-024-00260-6
Elizabeth Ellis, Keith Paustian
{"title":"Importance of on-farm research for validating process-based models of climate-smart agriculture","authors":"Elizabeth Ellis,&nbsp;Keith Paustian","doi":"10.1186/s13021-024-00260-6","DOIUrl":"10.1186/s13021-024-00260-6","url":null,"abstract":"<div><p>Climate-smart agriculture can be used to build soil carbon stocks, decrease agricultural greenhouse gas (GHG) emissions, and increase agronomic resilience to climate pressures. The US recently declared its commitment to include the agricultural sector as part of an overall climate-mitigation strategy, and with this comes the need for robust, scientifically valid tools for agricultural GHG flux measurements and modeling. If agriculture is to contribute significantly to climate mitigation, practice adoption should be incentivized on as much land area as possible and mitigation benefits should be accurately quantified. Process-based models are parameterized on data from a limited number of long-term agricultural experiments, which may not fully reflect outcomes on working farms. Space-for-time substitution, paired studies, and long-term monitoring of SOC stocks and GHG emissions on commercial farms using a variety of climate-smart management systems can validate findings from long-term agricultural experiments and provide data for process-based model improvements. Here, we describe a project that worked collaboratively with commercial producers in the Midwest to directly measure and model the soil organic carbon (SOC) stocks of their farms at the field scale. We describe this study, and several unexpected challenges encountered, to facilitate further on-farm data collection and the creation of a secure database of on-farm SOC stock measurements.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00260-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141173793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The largest European forest carbon sinks are in the Dinaric Alps old-growth forests: comparison of direct measurements and standardised approaches 欧洲最大的森林碳汇位于第纳尔阿尔卑斯山的原始森林:直接测量与标准化方法的比较。
IF 3.8 3区 环境科学与生态学
Carbon Balance and Management Pub Date : 2024-05-13 DOI: 10.1186/s13021-024-00262-4
Bono Alessia, Alberti Giorgio, Berretti Roberta, Curovic Milic, Dukic Vojislav, Motta Renzo
{"title":"The largest European forest carbon sinks are in the Dinaric Alps old-growth forests: comparison of direct measurements and standardised approaches","authors":"Bono Alessia,&nbsp;Alberti Giorgio,&nbsp;Berretti Roberta,&nbsp;Curovic Milic,&nbsp;Dukic Vojislav,&nbsp;Motta Renzo","doi":"10.1186/s13021-024-00262-4","DOIUrl":"10.1186/s13021-024-00262-4","url":null,"abstract":"<div><h3>Background</h3><p>Carbon (C) sink and stock are among the most important ecosystem services provided by forests in climate change mitigation policies. In this context, old-growth forests constitute an essential reference point for the development of close-to-nature silviculture, including C management techniques. Despite their small extent in Europe, temperate old-growth forests are assumed to be among the most prominent in terms of biomass and C stored. However, monitoring and reporting of C stocks is still poorly understood. To better understand the C stock amount and distribution in temperate old-growth forests, we estimated the C stock of two old-growth stands in the Dinaric Alps applying different assessment methods, including direct and indirect approaches (e.g., field measurements and allometric equations vs. IPCC standard methods). This paper presents the quantification and the distribution of C across the five main forest C pools (i.e., aboveground, belowground, deadwood, litter and soil) in the study areas and the differences between the applied methods.</p><h3>Results</h3><p>We report a very prominent C stock in both study areas (507 Mg C ha<sup>− 1</sup>), concentrated in a few large trees (36% of C in 5% of trees). Moreover, we found significant differences in C stock estimation between direct and indirect methods. Indeed, the latter tended to underestimate or overestimate depending on the pool considered.</p><h3>Conclusions</h3><p>Comparison of our results with previous studies and data collected in European forests highlights the prominence of temperate forests, among which the Dinaric Alps old-growth forests are the largest. These findings provide an important benchmark for the development of future approaches to the management of the European temperate forests. However, further and deeper research on C stock and fluxes in old-growth stands is of prime importance to understand the potential and limits of the climate mitigation role of forests.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00262-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon sequestration costs and spatial spillover effects in China's collective forests 中国集体林的固碳成本和空间溢出效应
IF 3.8 3区 环境科学与生态学
Carbon Balance and Management Pub Date : 2024-04-26 DOI: 10.1186/s13021-024-00261-5
Yifan Zhou, Caixia Xue, Shuohua Liu, Jinrong Zhang
{"title":"Carbon sequestration costs and spatial spillover effects in China's collective forests","authors":"Yifan Zhou,&nbsp;Caixia Xue,&nbsp;Shuohua Liu,&nbsp;Jinrong Zhang","doi":"10.1186/s13021-024-00261-5","DOIUrl":"10.1186/s13021-024-00261-5","url":null,"abstract":"<div><h3>Background</h3><p>Global climate change is one of the major challenges facing the world today, and forests play a crucial role as significant carbon sinks and providers of ecosystem services in mitigating climate change and protecting the environment. China, as one of the largest developing countries globally, owns 60% of its forest resources collectively. Evaluating the carbon sequestration cost of collective forests not only helps assess the contribution of China’s forest resources to global climate change mitigation but also provides important evidence for formulating relevant policies and measures.</p><h3>Results</h3><p>Over the past 30 years, the carbon sequestration cost of collective forests in China has shown an overall upward trend. Except for coastal provinces, southern collective forest areas, as well as some southwestern and northeastern regions, have the advantage of lower carbon sequestration costs. Furthermore, LSTM network predictions indicate that the carbon sequestration cost of collective forests in China will continue to rise. By 2030, the average carbon sequestration cost of collective forests is projected to reach 125 CNY per ton(= 16.06 Euros/t). Additionally, there is spatial correlation in the carbon sequestration cost of collective forests. Timber production, labor costs, and labor prices have negative spatial spillover effects on carbon sequestration costs, while land opportunity costs, forest accumulation, and rural resident consumption have positive spatial spillover effects.</p><h3>Conclusion</h3><p>The results of this study indicate regional disparities in the spatial distribution of carbon sequestration costs of collective forests, with an undeniable upward trend in future cost growth. It is essential to focus on areas with lower carbon sequestration costs and formulate targeted carbon sink economic policies and management measures to maximize the carbon sequestration potential of collective forests and promote the sustainable development of forestry.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00261-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140651139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信