Lingbo Dong, Xueying Lin, Pete Bettinger, Zhaogang Liu
{"title":"如何最大限度地发挥木材生产和碳封存对农村地区的共同效益?中国东北落叶松种植园案例研究。","authors":"Lingbo Dong, Xueying Lin, Pete Bettinger, Zhaogang Liu","doi":"10.1186/s13021-024-00271-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Implementing large-scale carbon sink afforestation may contribute to carbon neutrality targets and increase the economic benefits of forests in rural areas. However, how to manage planted forests in China to maximize the joint benefits of timber production and carbon sequestration is still unclear. Therefore, the present study quantified the effects of different rotation lengths, thinning treatments, site quality (SCI), stand density (SDI), and management costs on the joint benefits of carbon sequestration and timber production based on a stand-level model system developed for larch plantations in northeast China.</p><h3>Results</h3><p>The performances of the different scenarios on carbon stocks were satisfactory, where the variations in the outcomes of final carbon stocks could be explained by up to 90%. The joint benefits increased significantly with the increases of SDIs and SCIs, regardless of which rotation length and thinning treatments were evaluated. Early thinning treatments decreased the joint benefits significantly by approximately 131.53% and 32.16% of middle- and higher-SDIs, however longer rotations (60 years) could enlarge it by approximately 71.39% and 80.27% in scenarios with and without thinning when compared with a shorter rotation length (40 years). Discount rates and timber prices were the two most important variables affecting joint benefits, while the effects of carbon prices were not as significant as expected in the current trading market in China.</p><h3>Conclusions</h3><p>The management plans that promote longer rotations, higher stand densities, and no thinning treatments can maximize the joint benefits of carbon sequestration afforestation and timber production from larch plantations located in northeast China.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301996/pdf/","citationCount":"0","resultStr":"{\"title\":\"How to maximize the joint benefits of timber production and carbon sequestration for rural areas? A case study of larch plantations in northeast China\",\"authors\":\"Lingbo Dong, Xueying Lin, Pete Bettinger, Zhaogang Liu\",\"doi\":\"10.1186/s13021-024-00271-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Implementing large-scale carbon sink afforestation may contribute to carbon neutrality targets and increase the economic benefits of forests in rural areas. However, how to manage planted forests in China to maximize the joint benefits of timber production and carbon sequestration is still unclear. Therefore, the present study quantified the effects of different rotation lengths, thinning treatments, site quality (SCI), stand density (SDI), and management costs on the joint benefits of carbon sequestration and timber production based on a stand-level model system developed for larch plantations in northeast China.</p><h3>Results</h3><p>The performances of the different scenarios on carbon stocks were satisfactory, where the variations in the outcomes of final carbon stocks could be explained by up to 90%. The joint benefits increased significantly with the increases of SDIs and SCIs, regardless of which rotation length and thinning treatments were evaluated. Early thinning treatments decreased the joint benefits significantly by approximately 131.53% and 32.16% of middle- and higher-SDIs, however longer rotations (60 years) could enlarge it by approximately 71.39% and 80.27% in scenarios with and without thinning when compared with a shorter rotation length (40 years). Discount rates and timber prices were the two most important variables affecting joint benefits, while the effects of carbon prices were not as significant as expected in the current trading market in China.</p><h3>Conclusions</h3><p>The management plans that promote longer rotations, higher stand densities, and no thinning treatments can maximize the joint benefits of carbon sequestration afforestation and timber production from larch plantations located in northeast China.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301996/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13021-024-00271-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00271-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
How to maximize the joint benefits of timber production and carbon sequestration for rural areas? A case study of larch plantations in northeast China
Background
Implementing large-scale carbon sink afforestation may contribute to carbon neutrality targets and increase the economic benefits of forests in rural areas. However, how to manage planted forests in China to maximize the joint benefits of timber production and carbon sequestration is still unclear. Therefore, the present study quantified the effects of different rotation lengths, thinning treatments, site quality (SCI), stand density (SDI), and management costs on the joint benefits of carbon sequestration and timber production based on a stand-level model system developed for larch plantations in northeast China.
Results
The performances of the different scenarios on carbon stocks were satisfactory, where the variations in the outcomes of final carbon stocks could be explained by up to 90%. The joint benefits increased significantly with the increases of SDIs and SCIs, regardless of which rotation length and thinning treatments were evaluated. Early thinning treatments decreased the joint benefits significantly by approximately 131.53% and 32.16% of middle- and higher-SDIs, however longer rotations (60 years) could enlarge it by approximately 71.39% and 80.27% in scenarios with and without thinning when compared with a shorter rotation length (40 years). Discount rates and timber prices were the two most important variables affecting joint benefits, while the effects of carbon prices were not as significant as expected in the current trading market in China.
Conclusions
The management plans that promote longer rotations, higher stand densities, and no thinning treatments can maximize the joint benefits of carbon sequestration afforestation and timber production from larch plantations located in northeast China.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.