{"title":"探索树冠覆盖和环境因素在影响埃塞俄比亚 Desa'a 森林碳储存中的作用。","authors":"Negasi Solomon, Emiru Birhane, Mulley Teklay, Aklilu Negussie, Tesfay Gidey","doi":"10.1186/s13021-024-00277-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Dry Afromontane forests play a vital role in mitigating climate change by sequestering and storing carbon, as well as reducing greenhouse gas emissions. Despite previous research highlighting the importance of carbon stocks in these ecosystems, the influence of canopy cover and environmental factors on carbon storage in dry Afromontane forests has been barely assessed. This study addresses this knowledge gap by investigating the effects of environmental factors and vegetation cover on carbon stocks in Desa’a forest, a unique and threatened Afromontane dry forest ecosystem in northern Ethiopia. Data on woody vegetation, dead litter, grass biomass, and soil samples were collected from 57 plots. A one-way analysis of variance (ANOVA) was performed at a 95% confidence level (α = 0.05) to examine the influence of canopy cover and environmental factors on the carbon stocks of various pools.</p><h3>Results</h3><p>Among the 35 woody species identified, <i>Juniperus procera</i> was the most dominant, while <i>Carissa edulis</i> Vahl and <i>Eucalyptus globulus</i> were the least dominant. The average total carbon stock was 92.89 Mg ha<sup>−1</sup>, with contributions from aboveground carbon, below-ground carbon, litter carbon, grass carbon, and soil organic carbon. Among the carbon pools, soil organic carbon had the highest carbon stock, accounting for 76.8% of the total, followed by above-ground biomass carbon at 17.7%. Significant variations in carbon stocks were found across altitude class and canopy level but not slope and aspect factors.</p><h3>Conclusions</h3><p>In summary, altitude and canopy level were found to significantly influence carbon stocks in Desa’a forest, providing valuable insights for conservation and climate change mitigation efforts in dry Afromontane forests. Forest intervention planning and management strategies should consider the influence of different environmental variables and tree canopy levels.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00277-x","citationCount":"0","resultStr":"{\"title\":\"Exploring the role of canopy cover and environmental factors in shaping carbon storage in Desa’a forest, Ethiopia\",\"authors\":\"Negasi Solomon, Emiru Birhane, Mulley Teklay, Aklilu Negussie, Tesfay Gidey\",\"doi\":\"10.1186/s13021-024-00277-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Dry Afromontane forests play a vital role in mitigating climate change by sequestering and storing carbon, as well as reducing greenhouse gas emissions. Despite previous research highlighting the importance of carbon stocks in these ecosystems, the influence of canopy cover and environmental factors on carbon storage in dry Afromontane forests has been barely assessed. This study addresses this knowledge gap by investigating the effects of environmental factors and vegetation cover on carbon stocks in Desa’a forest, a unique and threatened Afromontane dry forest ecosystem in northern Ethiopia. Data on woody vegetation, dead litter, grass biomass, and soil samples were collected from 57 plots. A one-way analysis of variance (ANOVA) was performed at a 95% confidence level (α = 0.05) to examine the influence of canopy cover and environmental factors on the carbon stocks of various pools.</p><h3>Results</h3><p>Among the 35 woody species identified, <i>Juniperus procera</i> was the most dominant, while <i>Carissa edulis</i> Vahl and <i>Eucalyptus globulus</i> were the least dominant. The average total carbon stock was 92.89 Mg ha<sup>−1</sup>, with contributions from aboveground carbon, below-ground carbon, litter carbon, grass carbon, and soil organic carbon. Among the carbon pools, soil organic carbon had the highest carbon stock, accounting for 76.8% of the total, followed by above-ground biomass carbon at 17.7%. Significant variations in carbon stocks were found across altitude class and canopy level but not slope and aspect factors.</p><h3>Conclusions</h3><p>In summary, altitude and canopy level were found to significantly influence carbon stocks in Desa’a forest, providing valuable insights for conservation and climate change mitigation efforts in dry Afromontane forests. Forest intervention planning and management strategies should consider the influence of different environmental variables and tree canopy levels.</p></div>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00277-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13021-024-00277-x\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00277-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Exploring the role of canopy cover and environmental factors in shaping carbon storage in Desa’a forest, Ethiopia
Background
Dry Afromontane forests play a vital role in mitigating climate change by sequestering and storing carbon, as well as reducing greenhouse gas emissions. Despite previous research highlighting the importance of carbon stocks in these ecosystems, the influence of canopy cover and environmental factors on carbon storage in dry Afromontane forests has been barely assessed. This study addresses this knowledge gap by investigating the effects of environmental factors and vegetation cover on carbon stocks in Desa’a forest, a unique and threatened Afromontane dry forest ecosystem in northern Ethiopia. Data on woody vegetation, dead litter, grass biomass, and soil samples were collected from 57 plots. A one-way analysis of variance (ANOVA) was performed at a 95% confidence level (α = 0.05) to examine the influence of canopy cover and environmental factors on the carbon stocks of various pools.
Results
Among the 35 woody species identified, Juniperus procera was the most dominant, while Carissa edulis Vahl and Eucalyptus globulus were the least dominant. The average total carbon stock was 92.89 Mg ha−1, with contributions from aboveground carbon, below-ground carbon, litter carbon, grass carbon, and soil organic carbon. Among the carbon pools, soil organic carbon had the highest carbon stock, accounting for 76.8% of the total, followed by above-ground biomass carbon at 17.7%. Significant variations in carbon stocks were found across altitude class and canopy level but not slope and aspect factors.
Conclusions
In summary, altitude and canopy level were found to significantly influence carbon stocks in Desa’a forest, providing valuable insights for conservation and climate change mitigation efforts in dry Afromontane forests. Forest intervention planning and management strategies should consider the influence of different environmental variables and tree canopy levels.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.