Development Growth & Differentiation最新文献

筛选
英文 中文
Establishment and characterization of mouse lines useful for endogenous protein degradation via an improved auxin-inducible degron system (AID2) 通过改良的辅助素诱导降解子系统(AID2),建立有助于内源性蛋白质降解的小鼠品系并确定其特征。
IF 1.7 4区 生物学
Development Growth & Differentiation Pub Date : 2024-09-21 DOI: 10.1111/dgd.12942
Hatsune Makino-Itou, Noriko Yamatani, Akemi Okubo, Makoto Kiso, Rieko Ajima, Masato T. Kanemaki, Yumiko Saga
{"title":"Establishment and characterization of mouse lines useful for endogenous protein degradation via an improved auxin-inducible degron system (AID2)","authors":"Hatsune Makino-Itou,&nbsp;Noriko Yamatani,&nbsp;Akemi Okubo,&nbsp;Makoto Kiso,&nbsp;Rieko Ajima,&nbsp;Masato T. Kanemaki,&nbsp;Yumiko Saga","doi":"10.1111/dgd.12942","DOIUrl":"10.1111/dgd.12942","url":null,"abstract":"<p>The development of new technologies opens new avenues in the research field. Gene knockout is a key method for analyzing gene function in mice. Currently, conditional gene knockout strategies are employed to examine temporal and spatial gene function. However, phenotypes are sometimes not observed because of the time required for depletion due to the long half-life of the target proteins. Protein knockdown using an improved auxin-inducible degron system, AID2, overcomes such difficulties owing to rapid and efficient target depletion. We observed depletion of AID-tagged proteins within a few to several hours by a simple intraperitoneal injection of the auxin analog, 5-Ph-IAA, which is much shorter than the time required for target depletion using conditional gene knockout. Importantly, the loss of protein is reversible, making protein knockdown useful to measure the effects of transient loss of protein function. Here, we also established several mouse lines useful for AID2-medicated protein knockdown, which include knock-in mouse lines in the <i>ROSA26</i> locus; one expresses TIR1(F74G), and the other is the reporter expressing AID-mCherry. We also established a germ-cell-specific TIR1 line and confirmed the protein knockdown specificity. In addition, we introduced an AID tag to an endogenous protein, DCP2 via the CAS9-mediated gene editing method. We confirmed that the protein was effectively eliminated by TIR1(F74G), which resulted in the similar phenotype observed in knockout mouse within 20 h.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 7","pages":"384-393"},"PeriodicalIF":1.7,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12942","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chicken embryo cultures in the dorsal-upward orientation for the manipulation of epiblasts 鸡胚背向上方培养用于操作上胚层
IF 1.7 4区 生物学
Development Growth & Differentiation Pub Date : 2024-09-17 DOI: 10.1111/dgd.12943
Kaho Konya, Yusaku Watanabe, Akihito Kawamura, Kae Nakamura, Hideaki Iida, Koya Yoshihi, Hisato Kondoh
{"title":"Chicken embryo cultures in the dorsal-upward orientation for the manipulation of epiblasts","authors":"Kaho Konya,&nbsp;Yusaku Watanabe,&nbsp;Akihito Kawamura,&nbsp;Kae Nakamura,&nbsp;Hideaki Iida,&nbsp;Koya Yoshihi,&nbsp;Hisato Kondoh","doi":"10.1111/dgd.12943","DOIUrl":"10.1111/dgd.12943","url":null,"abstract":"<p>Chicken embryos have many advantages in the study of amniote embryonic development. In particular, culture techniques developed for early-stage embryos have promoted the advancement of modern developmental studies using chicken embryos. However, the standard technique involves placing chicken embryos in the ventral-upward (ventral-up) orientation, limiting manipulation of the epiblast at the dorsal surface, which is the primary source of ectodermal and mesodermal tissues. To circumvent this limitation, we developed chicken embryo cultures in the dorsal-up orientation and exploited this technique to address diverse issues. In this article, we first review the history of chicken embryo culture techniques to evaluate the advantages and limitations of the current standard technique. Then, the dorsal-up technique is discussed. These technological discussions are followed by three different examples of experimental analyses using dorsal-up cultures to illustrate their advantages: (1) EdU labeling of epiblast cells to assess potential variation in the cell proliferation rate; (2) migration behaviors of N1 enhancer-active epiblast cells revealed by tracking cells with focal fluorescent dye labeling in dorsal-up embryo culture; and (3) neural crest development of mouse neural stem cells in chicken embryos.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 8","pages":"426-434"},"PeriodicalIF":1.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12943","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meeting report of the 57th Annual Meeting of the Japanese Society for Developmental Biologists 日本发育生物学家学会第 57 届年会会议报告
IF 1.7 4区 生物学
Development Growth & Differentiation Pub Date : 2024-09-10 DOI: 10.1111/dgd.12941
Yuzuka Takeuchi
{"title":"Meeting report of the 57th Annual Meeting of the Japanese Society for Developmental Biologists","authors":"Yuzuka Takeuchi","doi":"10.1111/dgd.12941","DOIUrl":"10.1111/dgd.12941","url":null,"abstract":"<p>The 57th Annual Meeting of the Japanese Society for Developmental Biologists was held at Miyako Messe and ROHM Theater Kyoto from June 19 to 22, 2024. After the COVID-19 pandemic, this was the first meeting where all restrictions were removed. This year's theme was “Breaking Through Boundaries.” It was set to be enjoyed by everyone across academic fields and nationalities. About 600 people from 16 countries participated in this meeting. Four workshops, 117 posters, 16 oral sessions (80 titles), 7 symposia, 2 plenary lectures, and various other formats ware included. I would like to share some of the lively discussions and wonderful sessions that I attended.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 7","pages":"381-383"},"PeriodicalIF":1.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of specialized devices for microbial experimental evolution 开发微生物实验进化专用设备。
IF 1.7 4区 生物学
Development Growth & Differentiation Pub Date : 2024-08-26 DOI: 10.1111/dgd.12940
Atsushi Shibai, Chikara Furusawa
{"title":"Development of specialized devices for microbial experimental evolution","authors":"Atsushi Shibai,&nbsp;Chikara Furusawa","doi":"10.1111/dgd.12940","DOIUrl":"10.1111/dgd.12940","url":null,"abstract":"<p>Experimental evolution of microbial cells provides valuable information on evolutionary dynamics, such as mutations that contribute to fitness gain under given selection pressures. Although experimental evolution is a promising tool in evolutionary biology and bioengineering, long-term culture experiments under multiple environmental conditions often impose an excessive workload on researchers. Therefore, the development of automated systems significantly contributes to the advancement of experimental evolutionary research. This review presents several specialized devices designed for experimental evolution studies, such as an automated system for high-throughput culture experiments, a culture device that generate a temperature gradient, and an automated ultraviolet (UV) irradiation culture device. The ongoing development of such specialized devices is poised to continually expand new frontiers in experimental evolution research.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 7","pages":"372-380"},"PeriodicalIF":1.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12940","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The self-in-the-world map emerged in the primate brain as a basis for Homo sapiens abilities 自我世界地图出现在灵长类大脑中,是智人能力的基础。
IF 1.7 4区 生物学
Development Growth & Differentiation Pub Date : 2024-08-08 DOI: 10.1111/dgd.12939
Rafael Bretas, Banty Tia, Atsushi Iriki
{"title":"The self-in-the-world map emerged in the primate brain as a basis for Homo sapiens abilities","authors":"Rafael Bretas,&nbsp;Banty Tia,&nbsp;Atsushi Iriki","doi":"10.1111/dgd.12939","DOIUrl":"10.1111/dgd.12939","url":null,"abstract":"<p>The brain in the genus <i>Homo</i> expanded rapidly during evolution, accelerated by a reciprocated interaction between neural, cognitive, and ecological niches (triadic niche construction, or TNC). This biologically costly expansion incubated latent cognitive capabilities that, with a quick and inexpensive rewiring of brain areas in a second phase of TNC, provided the basis for <i>Homo sapiens</i> specific abilities. The neural demands for perception of the human body in interaction with tools and the environment required highly integrated sensorimotor domains, inducing the parietal lobe expansion seen in humans. These newly expanded brain areas allowed connecting the sensations felt in the body to the actions in the world through the cognitive function of “projection”. In this opinion article, we suggest that as a relationship of equivalence between body parts, tools and their external effects was established, mental mechanisms of self-objectification might have emerged as described previously, grounding notions of spatial organization, idealized objects, and their transformations, as well as socio-emotional states in the sensing agent through a <i>self-in-the-world map</i>. Therefore, human intelligence and its features such as symbolic thought, language, mentalizing, and complex technical and social behaviors could have stemmed from the explicit awareness of the causal relationship between the self and intentional modifications to the environment.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 6","pages":"342-348"},"PeriodicalIF":1.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12939","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial cell transitions in zebrafish vascular development 斑马鱼血管发育过程中的内皮细胞转换
IF 1.7 4区 生物学
Development Growth & Differentiation Pub Date : 2024-07-27 DOI: 10.1111/dgd.12938
Li-Kun Phng, Benjamin M. Hogan
{"title":"Endothelial cell transitions in zebrafish vascular development","authors":"Li-Kun Phng,&nbsp;Benjamin M. Hogan","doi":"10.1111/dgd.12938","DOIUrl":"10.1111/dgd.12938","url":null,"abstract":"<p>In recent decades, developmental biologists have come to view vascular development as a series of progressive transitions. Mesoderm differentiates into endothelial cells; arteries, veins and lymphatic endothelial cells are specified from early endothelial cells; and vascular networks diversify and invade developing tissues and organs. Our understanding of this elaborate developmental process has benefitted from detailed studies using the zebrafish as a model system. Here, we review a number of key developmental transitions that occur in zebrafish during the formation of the blood and lymphatic vessel networks.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 6","pages":"357-368"},"PeriodicalIF":1.7,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12938","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zebrafish trpm7 mutants show reduced motility in free movement 斑马鱼 trpm7 突变体在自由运动时运动能力下降。
IF 1.7 4区 生物学
Development Growth & Differentiation Pub Date : 2024-07-06 DOI: 10.1111/dgd.12937
Kenta Watai, Kenichiro Sadamitsu, Seiji Wada, Makoto Kashima, Hiromi Hirata
{"title":"Zebrafish trpm7 mutants show reduced motility in free movement","authors":"Kenta Watai,&nbsp;Kenichiro Sadamitsu,&nbsp;Seiji Wada,&nbsp;Makoto Kashima,&nbsp;Hiromi Hirata","doi":"10.1111/dgd.12937","DOIUrl":"10.1111/dgd.12937","url":null,"abstract":"<p>Parkinson's disease is a neurological disorder characterized by reduced motility, depression and dementia. Guamanian parkinsonism dementia with amyotrophic sclerosis is a local case of Parkinson's disease reported in the Western Pacific Islands of Guam and Rota as well as in the Kii Peninsula of Japan. A previous genetic study has suggested that Guamanian parkinsonism is attributable to a variant of the <i>TRPM7</i> gene, which encodes for melastatin-related transient receptor potential (TRP) ion channels. But the link between parkinsonism and the <i>TRPM7</i> gene remains elusive. Previous studies have addressed that <i>trpm7</i>-deficient zebrafish embryos showed defects in pigmentation and touch-evoked motor response. In this study, we identified a new viable allele of <i>trpm7</i> mutant causing an I756N amino acid substitution in the first transmembrane domain. Behavioral analyses revealed that <i>trpm7</i> mutants showed compromised motility with their movement distance shorter than wild-type larvae. The velocity of the movement was significantly reduced in <i>trpm7</i> mutants than in wild-type larvae. Along with a previous finding of reduced dopaminergic neurons in zebrafish <i>trpm7</i> mutants, reduced motility of <i>trpm7</i> mutants can suggest another similarity between <i>trpm7</i> phenotypes and Parkinson's disease symptoms.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 6","pages":"349-356"},"PeriodicalIF":1.7,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential cellular stiffness across tissues that contribute to Xenopus neural tube closure 造成爪蟾神经管闭合的不同组织细胞硬度的差异。
IF 1.7 4区 生物学
Development Growth & Differentiation Pub Date : 2024-06-26 DOI: 10.1111/dgd.12936
Makoto Suzuki, Naoko Yasue, Naoto Ueno
{"title":"Differential cellular stiffness across tissues that contribute to Xenopus neural tube closure","authors":"Makoto Suzuki,&nbsp;Naoko Yasue,&nbsp;Naoto Ueno","doi":"10.1111/dgd.12936","DOIUrl":"10.1111/dgd.12936","url":null,"abstract":"<p>During the formation of the neural tube, the primordium of the vertebrate central nervous system, the actomyosin activity of cells in different regions drives neural plate bending. However, how the stiffness of the neural plate and surrounding tissues is regulated and mechanically influences neural plate bending has not been elucidated. Here, we used atomic force microscopy to reveal the relationship between the stiffness of the neural plate and the mesoderm during <i>Xenopus</i> neural tube formation. Measurements with intact embryos revealed that the stiffness of the neural plate was consistently higher compared with the non-neural ectoderm and that it increased in an actomyosin activity-dependent manner during neural plate bending. Interestingly, measurements of isolated tissue explants also revealed that the relationship between the stiffness of the apical and basal sides of the neural plate was reversed during bending and that the stiffness of the mesoderm was lower than that of the basal side of the neural plate. The experimental elevation of mesoderm stiffness delayed neural plate bending, suggesting that low mesoderm stiffness mechanically supports neural tube closure. This study provides an example of mechanical interactions between tissues during large-scale morphogenetic movements.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 5","pages":"320-328"},"PeriodicalIF":1.7,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12936","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel preparation for histological analyses of intraventricular macrophages in the embryonic brain 用于胚胎脑室内巨噬细胞组织学分析的新型制备方法。
IF 1.7 4区 生物学
Development Growth & Differentiation Pub Date : 2024-06-19 DOI: 10.1111/dgd.12935
Futoshi Murayama, Hisa Asai, Arya Kirone Patra, Hiroaki Wake, Takaki Miyata, Yuki Hattori
{"title":"A novel preparation for histological analyses of intraventricular macrophages in the embryonic brain","authors":"Futoshi Murayama,&nbsp;Hisa Asai,&nbsp;Arya Kirone Patra,&nbsp;Hiroaki Wake,&nbsp;Takaki Miyata,&nbsp;Yuki Hattori","doi":"10.1111/dgd.12935","DOIUrl":"10.1111/dgd.12935","url":null,"abstract":"<p>Microglia colonize the brain starting on embryonic day (E) 9.5 in mice, and their population increases with development. We have previously demonstrated that some microglia are derived from intraventricular macrophages, which frequently infiltrate the pallium at E12.5. To address how the infiltration of intraventricular macrophages is spatiotemporally regulated, histological analyses detecting how these cells associate with the surrounding cells at the site of infiltration into the pallial surface are essential. Using two-photon microscopy-based in vivo imaging, we demonstrated that most intraventricular macrophages adhere to the ventricular surface. This is a useful tool for imaging intraventricular macrophages maintaining their original position, but this method cannot be used for observing deeper brain regions. Meanwhile, we found that conventional cryosection-based and naked pallial slice-based observation resulted in unexpected detachment from the ventricular surface of intraventricular macrophages and their mislocation, suggesting that previous histological analyses might have failed to determine their physiological number and location in the ventricular space. To address this, we sought to establish a methodological preparation that enables us to delineate the structure and cellular interactions when intraventricular macrophages infiltrate the pallium. Here, we report that brain slices pretreated with agarose-embedding maintained adequate density and proper positioning of intraventricular macrophages on the ventricular surface. This method also enabled us to perform the immunostaining. We believe that this is helpful for conducting histological analyses to elucidate the mechanisms underlying intraventricular macrophage infiltration into the pallium and their cellular properties, leading to further understanding of the process of microglial colonization into the developing brain.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 5","pages":"329-337"},"PeriodicalIF":1.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12935","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An analysis of semaphorin-mediated cellular interactions in the Caenorhabditis elegans epidermis using the IR-LEGO single-cell gene induction system 利用 IR-LEGO 单细胞基因诱导系统分析半角蛋白介导的秀丽隐杆线虫表皮细胞相互作用
IF 1.7 4区 生物学
Development Growth & Differentiation Pub Date : 2024-05-18 DOI: 10.1111/dgd.12925
Motoshi Suzuki, Shin Takagi
{"title":"An analysis of semaphorin-mediated cellular interactions in the Caenorhabditis elegans epidermis using the IR-LEGO single-cell gene induction system","authors":"Motoshi Suzuki,&nbsp;Shin Takagi","doi":"10.1111/dgd.12925","DOIUrl":"10.1111/dgd.12925","url":null,"abstract":"<p>One of the major functions of the semaphorin signaling system is the regulation of cell shape. In the nematode <i>Caenorhabditis elegans</i>, membrane-bound semaphorins SMP-1/2 (SMPs) regulate the morphology of epidermal cells via their receptor plexin, PLX-1. In the larval male tail of the SMP-PLX-1 signaling mutants, the border between two epidermal cells, R1.p and R2.p, is displaced anteriorly, resulting in the anterior displacement of the anterior-most ray, ray 1, in the adult male. To elucidate how the intercellular signaling mediated by SMPs regulates the position of the intercellular border, we performed mosaic gene expression analyses by using infrared laser-evoked gene operator (IR-LEGO). We show that PLX-1 expressed in R1.p and SMP-1 expressed in R2.p are required for the proper positioning of ray 1. The result suggests that SMP signaling promotes extension, rather than retraction, of R1.p. This is in contrast to a previous finding that SMPs mediate inhibition of cell extension of vulval precursor cells, another group of epidermal cells of <i>C. elegans</i>, indicating the context dependence of cell shape control via the semaphorin signaling system.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 5","pages":"308-319"},"PeriodicalIF":1.7,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12925","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信