Piotr Wojciechowski , K. Subramani , Alvaro Velasquez
{"title":"Reachability in choice networks","authors":"Piotr Wojciechowski , K. Subramani , Alvaro Velasquez","doi":"10.1016/j.disopt.2023.100761","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100761","url":null,"abstract":"<div><p>In this paper, we investigate the problem of determining <span><math><mrow><mi>s</mi><mo>−</mo><mi>t</mi></mrow></math></span> reachability in <strong>choice networks</strong>. In the traditional <span><math><mrow><mi>s</mi><mo>−</mo><mi>t</mi></mrow></math></span> reachability problem, we are given a weighted network tuple <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>〈</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>〉</mo></mrow></mrow></math></span>, with the goal of checking if there exists a path from <span><math><mi>s</mi></math></span> to <span><math><mi>t</mi></math></span> in <span><math><mi>G</mi></math></span>. In an optional choice network, we are given a choice set <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>E</mi><mo>×</mo><mi>E</mi></mrow></math></span>, in addition to the network tuple <span><math><mi>G</mi></math></span>. In the <span><math><mrow><mi>s</mi><mo>−</mo><mi>t</mi></mrow></math></span> reachability problem in choice networks (OCR<span><math><msub><mrow></mrow><mrow><mi>D</mi></mrow></msub></math></span>), the goal is to find whether there exists a path from vertex <span><math><mi>s</mi></math></span> to vertex <span><math><mi>t</mi></math></span>, with the caveat that at most one edge from each edge-pair <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><mi>S</mi></mrow></math></span> is used in the path. OCR<span><math><msub><mrow></mrow><mrow><mi>D</mi></mrow></msub></math></span> finds applications in a number of domains, including <strong>routing in wireless networks</strong> and <strong>sensor placement</strong>. We analyze the computational complexities of the OCR<span><math><msub><mrow></mrow><mrow><mi>D</mi></mrow></msub></math></span> problem and its variants from a number of algorithmic perspectives. We show that the problem is <strong>NP-complete</strong> in directed acyclic graphs with bounded pathwidth. Additionally, we show that its optimization version is <strong>NPO PB-complete</strong>. Additionally, we show that the problem is fixed-parameter tractable in the cardinality of the choice set <span><math><mi>S</mi></math></span>. In particular, we show that the problem can be solved in time <span><math><mrow><msup><mrow><mi>O</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mn>1</mn><mo>.</mo><mn>4</mn><msup><mrow><mn>2</mn></mrow><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow></mrow></msup><mo>)</mo></mrow></mrow></math></span>. We also consider weighted versions of the OCR<span><math><msub><mrow></mrow><mrow><mi>D</mi></mrow></msub></math></span> problem and detail their computational complexities; in particular, the optimization version of the <span><math><mrow><mi>W</mi><mi>O</mi><mi>C</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>D</mi></mrow></msub></mrow></math></span> problem is <strong>NPO-complete</strong>. While similar results have been obtained for related problems, our results improve ","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gábor Bacsó , Boštjan Brešar , Kirsti Kuenzel , Douglas F. Rall
{"title":"Graphs with equal Grundy domination and independence number","authors":"Gábor Bacsó , Boštjan Brešar , Kirsti Kuenzel , Douglas F. Rall","doi":"10.1016/j.disopt.2023.100777","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100777","url":null,"abstract":"<div><p>The Grundy domination number, <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>gr</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, of a graph <span><math><mi>G</mi></math></span> is the maximum length of a sequence <span><math><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></math></span> of vertices in <span><math><mi>G</mi></math></span> such that for every <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span>, the closed neighborhood <span><math><mrow><mi>N</mi><mrow><mo>[</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span> contains a vertex that does not belong to any closed neighborhood <span><math><mrow><mi>N</mi><mrow><mo>[</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>j</mi><mo><</mo><mi>i</mi></mrow></math></span>. It is well known that the Grundy domination number of any graph <span><math><mi>G</mi></math></span> is greater than or equal to the upper domination number <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, which is in turn greater than or equal to the independence number <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we initiate the study of the class of graphs <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>gr</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and its subclass consisting of graphs <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>gr</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We characterize the latter class of graphs among all twin-free connected graphs, provide a number of properties of these graphs, and prove that the hypercubes are members of this class. In addition, we give several necessary conditions for graphs <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>gr</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and present large families of such graphs.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49734399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EPTAS for load balancing problem on parallel machines with a non-renewable resource","authors":"G. Jaykrishnan, Asaf Levin","doi":"10.1016/j.disopt.2023.100775","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100775","url":null,"abstract":"<div><p>The problem considered is the non-preemptive scheduling of independent jobs that consume a resource (which is non-renewable and replenished regularly) on parallel uniformly related machines. The input defines the speed of machines, size of jobs, the quantity of the resource required by the jobs, the replenished quantities, and replenishment dates of the resource. Every job can start processing only after the required quantity of the resource is allocated to the job. The objective function is a generalization of makespan minimization and minimization of the <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span><span>-norm of the vector of loads of the machines. We present an EPTAS for this problem. Prior to our work only a PTAS was known in this non-renewable resource settings only for the special case of our problem of makespan minimization on identical machines.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49809021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Piotr Wojciechowski , K. Subramani , Alvaro Velasquez
{"title":"Reachability in choice networks","authors":"Piotr Wojciechowski , K. Subramani , Alvaro Velasquez","doi":"10.1016/j.disopt.2023.100761","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100761","url":null,"abstract":"<div><p>In this paper, we investigate the problem of determining <span><math><mrow><mi>s</mi><mo>−</mo><mi>t</mi></mrow></math></span> reachability in <strong>choice networks</strong>. In the traditional <span><math><mrow><mi>s</mi><mo>−</mo><mi>t</mi></mrow></math></span> reachability problem, we are given a weighted network tuple <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>〈</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>〉</mo></mrow></mrow></math></span>, with the goal of checking if there exists a path from <span><math><mi>s</mi></math></span> to <span><math><mi>t</mi></math></span> in <span><math><mi>G</mi></math></span>. In an optional choice network, we are given a choice set <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>E</mi><mo>×</mo><mi>E</mi></mrow></math></span>, in addition to the network tuple <span><math><mi>G</mi></math></span>. In the <span><math><mrow><mi>s</mi><mo>−</mo><mi>t</mi></mrow></math></span> reachability problem in choice networks (OCR<span><math><msub><mrow></mrow><mrow><mi>D</mi></mrow></msub></math></span>), the goal is to find whether there exists a path from vertex <span><math><mi>s</mi></math></span> to vertex <span><math><mi>t</mi></math></span>, with the caveat that at most one edge from each edge-pair <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><mi>S</mi></mrow></math></span> is used in the path. OCR<span><math><msub><mrow></mrow><mrow><mi>D</mi></mrow></msub></math></span> finds applications in a number of domains, including <strong>routing in wireless networks</strong> and <strong>sensor placement</strong>. We analyze the computational complexities of the OCR<span><math><msub><mrow></mrow><mrow><mi>D</mi></mrow></msub></math></span> problem and its variants from a number of algorithmic perspectives. We show that the problem is <strong>NP-complete</strong> in directed acyclic graphs with bounded pathwidth. Additionally, we show that its optimization version is <strong>NPO PB-complete</strong>. Additionally, we show that the problem is fixed-parameter tractable in the cardinality of the choice set <span><math><mi>S</mi></math></span>. In particular, we show that the problem can be solved in time <span><math><mrow><msup><mrow><mi>O</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mn>1</mn><mo>.</mo><mn>4</mn><msup><mrow><mn>2</mn></mrow><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow></mrow></msup><mo>)</mo></mrow></mrow></math></span>. We also consider weighted versions of the OCR<span><math><msub><mrow></mrow><mrow><mi>D</mi></mrow></msub></math></span> problem and detail their computational complexities; in particular, the optimization version of the <span><math><mrow><mi>W</mi><mi>O</mi><mi>C</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>D</mi></mrow></msub></mrow></math></span> problem is <strong>NPO-complete</strong>. While similar results have been obtained for related problems, our results improve ","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49809017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The complexity of 2-vertex-connected orientation in mixed graphs","authors":"Florian Hörsch , Zoltán Szigeti","doi":"10.1016/j.disopt.2023.100774","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100774","url":null,"abstract":"<div><p>We consider two possible extensions of a theorem of Thomassen characterizing the graphs admitting a 2-vertex-connected orientation. First, we show that the problem of deciding whether a mixed graph has a 2-vertex-connected orientation is NP-hard. This answers a question of Bang-Jensen, Huang and Zhu. For the second part, we call a directed graph <span><math><mrow><mi>D</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span>\u0000<span><math><mrow><mn>2</mn><mi>T</mi></mrow></math></span>-connected for some <span><math><mrow><mi>T</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> if <span><math><mi>D</mi></math></span> is 2-arc-connected and <span><math><mrow><mi>D</mi><mo>−</mo><mi>v</mi></mrow></math></span> is strongly connected for all <span><math><mrow><mi>v</mi><mo>∈</mo><mi>T</mi></mrow></math></span>. We deduce a characterization of the graphs admitting a <span><math><mrow><mn>2</mn><mi>T</mi></mrow></math></span>-connected orientation from the theorem of Thomassen.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49809020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximating single- and multi-objective nonlinear sum and product knapsack problems","authors":"Jan Boeckmann , Clemens Thielen , Ulrich Pferschy","doi":"10.1016/j.disopt.2023.100771","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100771","url":null,"abstract":"<div><p>We present a fully polynomial-time approximation scheme (FPTAS) for a very general version of the well-known knapsack problem. This generalization covers, with few exceptions, all versions of knapsack problems that have been studied in the literature so far and allows for an objective function consisting of sums or products of possibly nonlinear, separable item profits, while the knapsack constraint states an upper bound on the sum of possibly nonlinear, separable item weights. Moreover, we extend our FPTAS to a multi-objective fully polynomial-time approximation scheme (MFPTAS) for the multi-objective version of the problem.</p><p>As applications of our general algorithms, we obtain the first FPTAS for the recently-introduced 0–1 time-bomb knapsack problem as well as FPTASs for a variety of robust knapsack problems. Moreover, we extend our FPTAS to the minimization version of our general problem, which, in particular, allows us to explicitly state an FPTAS for the classical minimization knapsack problem, which has been missing in the literature so far.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The polytope of binary sequences with bounded variation","authors":"Christoph Buchheim, Maja Hügging","doi":"10.1016/j.disopt.2023.100776","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100776","url":null,"abstract":"<div><p><span>We investigate the problem of optimizing a linear objective function over the set of all binary vectors of length </span><span><math><mi>n</mi></math></span><span> with bounded variation<span>, where the latter is defined as the number of pairs of consecutive entries with different value. This problem arises naturally in many applications, e.g., in unit commitment problems or when discretizing binary optimal control problems<span> subject to a bounded total variation. We study two variants of the problem. In the first one, the variation of the binary vector is penalized in the objective function, while in the second one, it is bounded by a hard constraint. We show that the first variant is easy to deal with while the second variant turns out to be more complex, but still tractable. For the latter case, we present a complete polyhedral description of the convex hull of feasible solutions by facet-inducing inequalities and devise an exact linear-time separation algorithm. The proof of completeness also yields a new exact primal algorithm with a running time of </span></span></span><span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, which is significantly faster than the straightforward dynamic programming approach. Finally, we devise a compact extended formulation.</p><p>A preliminary version of this article has been published in the Proceedings of the 7th International Symposium on Combinatorial Optimization (ISCO 2022) (Buchheim and Hügging, 2022).</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natalia de Castro , María A. Garrido-Vizuete , Rafael Robles , María Trinidad Villar-Liñán
{"title":"Minimum gradation in greyscales of graphs","authors":"Natalia de Castro , María A. Garrido-Vizuete , Rafael Robles , María Trinidad Villar-Liñán","doi":"10.1016/j.disopt.2023.100773","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100773","url":null,"abstract":"<div><p>In this paper we present the notion of greyscale of a graph as a colouring of its vertices that uses colours from the real interval [0,1]. Any greyscale induces another colouring by assigning to each edge the non-negative difference between the colours of its vertices. These edge colours are ordered in lexicographical decreasing ordering and give rise to a new element of the graph: the gradation vector. We introduce the notion of minimum gradation vector as a new invariant for the graph and give polynomial algorithms to obtain it. These algorithms also output all greyscales that produce the minimum gradation vector. This way we tackle and solve a novel vectorial optimization problem in graphs that may generate more satisfactory solutions than those generated by known scalar optimization approaches.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49809019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximating single- and multi-objective nonlinear sum and product knapsack problems","authors":"Jan Boeckmann , Clemens Thielen , Ulrich Pferschy","doi":"10.1016/j.disopt.2023.100771","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100771","url":null,"abstract":"<div><p>We present a fully polynomial-time approximation scheme (FPTAS) for a very general version of the well-known knapsack problem. This generalization covers, with few exceptions, all versions of knapsack problems that have been studied in the literature so far and allows for an objective function consisting of sums or products of possibly nonlinear, separable item profits, while the knapsack constraint states an upper bound on the sum of possibly nonlinear, separable item weights. Moreover, we extend our FPTAS to a multi-objective fully polynomial-time approximation scheme (MFPTAS) for the multi-objective version of the problem.</p><p>As applications of our general algorithms, we obtain the first FPTAS for the recently-introduced 0–1 time-bomb knapsack problem as well as FPTASs for a variety of robust knapsack problems. Moreover, we extend our FPTAS to the minimization version of our general problem, which, in particular, allows us to explicitly state an FPTAS for the classical minimization knapsack problem, which has been missing in the literature so far.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49809024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An improved greedy algorithm for stochastic online scheduling on unrelated machines","authors":"Sven Jäger","doi":"10.1016/j.disopt.2022.100753","DOIUrl":"https://doi.org/10.1016/j.disopt.2022.100753","url":null,"abstract":"<div><p>Most practical scheduling applications involve some uncertainty about the arriving times and lengths of the jobs. Stochastic online scheduling is a well-established model capturing this. Here the arrivals occur online, while the processing times are random. For this model, Gupta, Moseley, Uetz, and Xie recently devised an efficient policy for non-preemptive scheduling on unrelated machines with the objective to minimize the expected total weighted completion time. We improve upon this policy by adroitly combining greedy job assignment with <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>-point scheduling on each machine. In this way we obtain a <span><math><mrow><mrow><mo>(</mo><mn>3</mn><mo>+</mo><msqrt><mrow><mn>5</mn></mrow></msqrt><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mi>Δ</mi><mo>)</mo></mrow></mrow></math></span>-competitive deterministic and an <span><math><mrow><mo>(</mo><mn>8</mn><mo>+</mo><mn>4</mn><mi>Δ</mi><mo>)</mo></mrow></math></span>-competitive randomized stochastic online scheduling policy, where <span><math><mi>Δ</mi></math></span> is an upper bound on the squared coefficients of variation of the processing times. We also give constant performance guarantees for these policies within the class of all fixed-assignment policies. The <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>-point scheduling on a single machine can be enhanced when the upper bound <span><math><mi>Δ</mi></math></span> is known a priori or the processing times are known to be <span><math><mi>δ</mi></math></span>-NBUE for some <span><math><mrow><mi>δ</mi><mo>≥</mo><mn>1</mn></mrow></math></span><span>. This implies improved competitive ratios for unrelated machines but may also be of independent interest.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49731728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}