Hard problems on box-totally dual integral polyhedra

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Patrick Chervet , Roland Grappe , Mathieu Lacroix , Francesco Pisanu , Roberto Wolfler Calvo
{"title":"Hard problems on box-totally dual integral polyhedra","authors":"Patrick Chervet ,&nbsp;Roland Grappe ,&nbsp;Mathieu Lacroix ,&nbsp;Francesco Pisanu ,&nbsp;Roberto Wolfler Calvo","doi":"10.1016/j.disopt.2023.100810","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the complexity of some fundamental questions regarding box-totally dual integral (box-TDI) polyhedra. First, although box-TDI polyhedra have strong integrality properties, we prove that Integer Programming over box-TDI polyhedra is NP-complete, that is, finding an integer point optimizing a linear function over a box-TDI polyhedron is hard. Second, we complement the result of Ding et al. (2008) who proved that deciding whether a given system is box-TDI is co-NP-complete: we prove that recognizing whether a polyhedron is box-TDI is co-NP-complete.</p><p>To derive these complexity results, we exhibit new classes of totally equimodular matrices – a generalization of totally unimodular matrices – by characterizing the total equimodularity of incidence matrices of graphs.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100810"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157252862300052X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the complexity of some fundamental questions regarding box-totally dual integral (box-TDI) polyhedra. First, although box-TDI polyhedra have strong integrality properties, we prove that Integer Programming over box-TDI polyhedra is NP-complete, that is, finding an integer point optimizing a linear function over a box-TDI polyhedron is hard. Second, we complement the result of Ding et al. (2008) who proved that deciding whether a given system is box-TDI is co-NP-complete: we prove that recognizing whether a polyhedron is box-TDI is co-NP-complete.

To derive these complexity results, we exhibit new classes of totally equimodular matrices – a generalization of totally unimodular matrices – by characterizing the total equimodularity of incidence matrices of graphs.

盒型完全对偶积分多面体的若干难题
本文研究了盒-完全对偶积分多面体的一些基本问题的复杂性。首先,尽管盒- tdi多面体具有很强的整体性,但我们证明了盒- tdi多面体上的整数规划是np完全的,即很难找到一个整数点来优化一个线性函数。其次,我们补充了Ding et al.(2008)证明判定给定系统是否为box-TDI是共np完全的结果:我们证明了识别多面体是否为box-TDI是共np完全的。为了得到这些复杂性结果,我们通过刻画图关联矩阵的全等模性,展示了一类新的全等模矩阵——全等模矩阵的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信